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1. Kevin evaluates the sum of all positive divisors of  that are multiples of  and writes the
result on a blackboard. Underneath, he evaluates the sum of all positive divisors of  and writes
down that result. Compute the ratio of the top number to the bottom number.

Solution: Let  be the sum of the positive divisors of . A divisor of  that is a
multiple of  can be written as  for some positive integer  satisfying 

 That is, this divisor is  times a positive divisor of . Thus, the sum of the positive
divisors of  that are multiples of  can be written as . The answer is thus 

2. Let  be a  digit perfect square. Let  be the  digit number formed from reading the
first  digits of , in order, and let  be the  digit number formed from reading the last

 digits of , in order. Given that  is the unique choice that maximizes , find the
sum of digits of .

Solution: Intuitively, we want the first half to have as many ’s as possible in terms of digits, and
the second half as much ’s. This leads us to conjecture that letting  where there are

 occurrences of the digit  gives the optimal solution. Expanding, we get  where
there are  occurrences of the digit  and  occurrences of the digit . This gives a 

 difference of . Computing adjacent perfect squares, we find  is optimal and unique.

The answer is thus 

3. Let  be a set of subsets of .  is called distinguishing if each of , , and  are
distinguishable from each other—that is, , , and  are each in a distinct set of subsets from each
other. For example  is distinguishing because  is in ,  is in , and 
is in  and   is also distinguishing:  is in ,  is in  and ,
and  is in none of the subsets.

On the other hand,  is not distinguishing. Both  and  are only in , so they
cannot be distinguished from each other.

How many distinguishing sets of subsets of  are there?

Solution: There are a total of  possible subsets of , so there are  possible
collections of these subsets. We will solve this problem by complementary counting—determining
how many sets are not distinguishable.

There are two cases: either none of the values  can be distinguished, or only one of the
values  can be distinguished.

If none of the values can be distinguished, then the only possible subsets are  and . Each
of these subsets can be either included or excluded from , so we have a total of  such
collections .

If only one of the values can be distinguished, say without loss of generality that this value is .
Then, we are restricted to the subsets , , ,  (since  and  cannot be
distinguished from each other). Each of these subsets can be either included or excluded in , so
we have a total of  such collections. However,  of these collections (the ones with only 
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and  have already been counted in the first case. Thus, we have  possible
collections. Either , , and  can be distingushed, so we have a total of  total collections.

Our final answer is .

4. Each vertex and edge of an equilateral triangle is randomly labelled with a distinct integer from 
to , inclusive. Compute the probability that the number on each edge is the sum of those on its
vertices.

Solution: We count the number of working configurations first. Assume the triangle is in upright
position, and let  be the labels of the vertex on the top, bottom-left, and bottom-right,
respectively. Without a loss of generality, assume  (we will multiply by 6 later). Now,
note that all edge labels are fixed, and distinct, since . Thus, the only
"repeats" can occur between a vertex and an edge. But an edge clearly cannot repeat value with any
of its vertices, and so may only repeat value with the opposite vertex. This occurs when some two
of  sum to the other, which since  can only occur when  There is one
more condition we need to worry about: because all labels are from , we have 

 Now, since  (being the middle value), we can fix  from  to . Then
there are  possible values of , and  possible values of  (from .) This
gives  total pairs. Summing over all , we get a total of 

 total labelings. However, we need to subtract those with  To compute this,
we can do casework on . As  varies from  to , the number of  with  is

, from a quick manual inspection, giving a total of  valid labelings.
Thus there are  total labelings, without the assumption that . There are 

 total orderings, giving an answer of 

5. We define the spillage of a number as , that is, the largest integer that is at most .
The spillage of a list of numbers  is the sum of left to right spillages: 

. Let  be the minimum possible spillage of 
over all the permutations of this list. How many of these permutations achieve ?

Solution: Note that the minimum possible spillage can be achieved by minimizing the sum of the
terms  and  One ordering that minimizes the sum simply places the largest
values in the list in the least number of products. For our list, this permutation is 
The last spillage value in the sum is fixed as  for any permutation.

We now consider which numbers can be moved in the ordering while still achieving the minimum
spillage sum. If  then  and the minimum that can be achieved is
to have the rest of the spillage values remain the same as in permutation  Thus, the minimum
spillage sum cannot be achieved if we do not set  We can use the same reasoning to
conclude that we must set  and  For  we see that in the permutation 
the first  terms in the spillage sum are  Since we have fixed  through  we know
that  which gives  We want to choose  so that 

 which requires that  Then, we want to choose  so that  which
requires that  The remaining numbers can be ordered in any way. For each of the values

 and  for  there are  possible values for  so that  Then, there are  ways to
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order the remaining numbers. Thus, the number of permutations that achieve the minimum spillage

sum is 

6. Alice is playing with magnets on her fridge. She has 7 magnets, with the numbers ,
in that order in a row, and she also has two magnets with a " " sign, two magnets with a " " sign,
and two magnets with a " " sign. She randomly puts these six operation magnets between her 7
number magnets, with one operation between every two consecutive numbers, and evaluates the
resulting expression (following the order of operations). What is the expected value of her result?

Solution: Suppose that Alice instead has a list of  numbers , two plus, and two
minus magnets. Then, the expected result of placing these magnets is just : by linearity of
expectation, there is a  probability of each of  being added or subtracted from the
result.

Hence, there are only three cases for the answer:  depending on where the multiplication
symbols are placed. There are a total of  ways of placing the magnets. Of these,  of them
have the term  and  of them have the term . Thus, the answer is

7. Let  and  be two integers such that  and  are fractions in simplest
form, yet, when adding  and  by rewriting both fractions with their lowest common
denominator and adding the resulting numerators, the new fraction can be simplified. Find how
many ordered pairs  are possible.

Solution: Note that  and that  is the summand. Since this can
be simplified, we know  and  must share some common divisor larger than . Since

,  is relatively prime to  and . It follows that  must
be a multiple of , the only remaining prime factor of . Thus , implying

. Now,  and . This means there are  ways
to choose , without regards to restrictions on  However, with the restriction, once

 is chosen  is fixed  Since the possible values of  are symmetric for

, we can divide by  and obtain an answer of 

8. Call a polynomial  cool if it has degree less than , each of its coefficients are nonnegative
integers less than , and

is divisible by  for all positive integers . How many cool polynomials are there? (Assume that
the polynomial  has degree less than )

Solution: Let . Note that  is prime (which can be verified by checking that no prime up
to  is a divisor). Suppose
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is cool. Then we have

is a multiple of  for all positive integers . Also, by Fermat’s Little Theorem we only have to
consider  at most .

Note that  is a multiple of  if and only if  is not a multiple of  and is  if

. To see this, note that when  we have 
 When  let  be a generator of the multiplicative group 

 so we have  We see that  are all distinct elements of  so

Since  this implies that 

Thus, letting , we have

for all .

Now we use . We have  by taking . Now take , to get 
possibilities for . Then,  gives us  possibilities for  and . Continuing, taking

 will give  possibilities for  since we can freely choose the first 
elements in the sequence, leaving one possibility for the last element. Additionally, we have no
restrictions on , so we multiply by . Thus, the number of solutions is

In general, the answer is  where  is the number of divisors of .

9. Let  be a function which satisfies . What is the least integer  for
which  is an integer?

Solution: First of all, define . Then,  and  is multiplicative over coprimes,
i.e. if  and  are coprime then . To see this, we can induct on  (the base
case  is clear). Then,
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so , as desired.

Here, we have used the fact that since  and  are coprime, then  and  are coprime, as well as
 and .

Let us consider the sequence of numbers  defined by  (so, ). We see
that,

This gives us  We will proceed with  as the
cases are symmetrical and will result in the same answer. We have .

After expanding the expression, we get . In particular, we get that .
Since we’re only looking for the least integer  for which  is an integer, we may assume that 
is a power of . Write , then . Thus this whole thing comes down to finding
minimal  such that  is an integer. It turns out, either via brute force or via degree-counting in

factorials, that  is the desired answer. Therefore, .

10. There are  students taking an exam, and at the beginning they all put their phones into a pile.
When leaving, each person takes an arbitrary phone from the pile. Unfortunately, it might be the
case that some students did not get back their own phone!

To get back the correct phones, the students come up with the following strategy. They repeat the
following round as many times as needed:

1. Some of the students pair up. Each student can be in at most one pair.

2. The pairs swap phones according to some swap order (i.e. an ordering of the pairs).

For a given assignment  of the  students to the phones they originally picked up, let  be the
minimum number of rounds required for the students to each receive back their own phone,
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assuming the students make swaps optimally. Let  be the number of ways to swap phones
(determined by pairings and swap orders over all rounds) achieving  rounds. Let  be the
maximum value of  over all assignments  and let  be the sum of  over all  with

.

Then, there exists a unique ordered pair  with  and  such that 
Compute 

Note: It may be helpful to know that 

Solution: We claim that for any assignmenr , the value of  is at most  Indeed, consider the
cycle decomposition  of the permutation  corresponding to the student-phone pairs.
First, the answer is  whenever this is the identity permutation. Next, each transposition (cycle of
length ) can be dealt with in one round in parallel. So, it suffices to just consider the cycles of
length at least .

We will deal with each such cycle in parallel in two rounds, thus giving the desired result. Indeed,
consider WLOG a cycle with  (student 1 has student
2′s phone, student 2 has student 3′s phone, etc.)

Then, consider swapping the phones that student  and  are holding, the ones  and  are
holding, and so on through  and  (student  and possibly one student in the middle do
not participate in any swaps). Then, this pairs up , and 

, and so on. From here, the problem is reduced to one on transpositions so the answer must
be at most .

Now, the answer is at most  if and only if the maximum cycle size is at most . The sum of 
over these is  (choose the  students in transpositions and then pair them
up). We can rewrite this as

Let us recall that  and thus . Thus, as , we can rewrite
the above as
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or equivalently

Our answer is 


