
Discrete Test Solutions April 8, 2023

1. For all positive integers n > 1, let f(n) denote the largest odd proper divisor of n (a proper
divisor of n is a positive divisor of n except for n itself). Given that N = 2023 · 2320, compute

f(N)

f(f(f(N)))
.

Answer: 25

Solution: Let n > 1 be a positive integer. If n is even, note that f(n) = n
2v(n) , where v(n) is the

largest integer k such that 2k divides n. Otherwise, if n > 1 is odd, we have f(n) = n
p(n) , where

p(n) is the smallest odd prime factor of n (which exists since n > 1 and n is odd). Using these
observations, we find that f(N) = 523 · 2320, f(f(N)) = 522 · 2320, and f(f(f(N))) = 521 · 2320.
Our answer is

523 · 2320

521 · 2320
= 25 .

2. A 3× 3 grid is to be painted with three colors (red, green, and blue) such that

(i) no two squares that share an edge are the same color and

(ii) no two corner squares on the same edge of the grid have the same color.

As an example, the upper-left and bottom-left squares cannot both be red, as that would violate
condition (ii). In how many ways can this be done? (Rotations and reflections are considered
distinct colorings.)

Answer: 24

Solution: Let A be the upper-left corner and let the other corners be B,C, and D in counter-
clockwise order. Now, let a denote the color on A. Then if the corners adjacent to A have the
same color, say b, the last corner has color a or c ̸= a, b. In the first case, the squares between
A and B, B and C, C and D, D and A are determined to be of color c, while the center square
still has 2 options (a or b). In the second case, corner C is of color c, while every other square
gets uniquely determined. Now, in the last case, the corners adjacent to A are of different colors
b, c (WLOG b at corner B and c at corner D), implying the last corner has color a and all
the remaining squares are determined. Thus, for a fixed triplet (a, b, c), there are a total of
2 + 1 + 1 = 4 different configurations of colors. As there are 3! = 6 ways to determine (a, b, c),
the answer is 6 · 4 = 24 .

3. How many trailing zeros does the value

300 · 305 · 310 · · · 1090 · 1095 · 1100

end with?

Answer: 161

Solution: Rewrite the expression as

300 · 305 · 310 · · · 1090 · 1095 · 1100 = 5161 · 220!
59!

.

By Legendre’s formula, there are ⌊
59

5

⌋
+

⌊
59

25

⌋
= 13
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factors of 5 in 59! and ⌊
59

2

⌋
+

⌊
59

4

⌋
+

⌊
59

8

⌋
+

⌊
59

16

⌋
+

⌊
59

32

⌋
= 54

factors of 2 in 59!. Morever, there are⌊
220

5

⌋
+

⌊
220

25

⌋
+

⌊
220

125

⌋
= 53

factors of 5 in 220! and⌊
220

2

⌋
+

⌊
220

4

⌋
+

⌊
220

8

⌋
+

⌊
220

16

⌋
+

⌊
220

32

⌋
+

⌊
220

64

⌋
+

⌊
220

128

⌋
= 215

factors of 2 in 220!. Thus there are

161 + 53− 13 = 201

factors of 5 in the product and
215− 54 = 161

factors of 2 in the product. Since 161 < 201, it follows the answer is 161 .

4. Michelle is drawing segments in the plane. She begins from the origin facing up the y-axis and
draws a segment of length 1. Now, she rotates her direction by 120◦, with equal probability
clockwise or counterclockwise, and draws another segment of length 1 beginning from the end of
the previous segment. She then continues this until she hits an already drawn segment. What
is the expected number of segments she has drawn when this happens?

Answer: 4

Solution: Michelle’s drawing process is that of a random walk on the triangulated lattice.
Notice that if at any point Michelle has two of the same rotation in a row, she will necessarily
hit an already drawn segment by constructing an equilateral triangle. Note as well that if she
alternates rotations every step, then she will go to infinity and never intersect a prior segment.

The problem thus reduces to finding the expected time of first occurrence of two adjacent heads
or tails in a series of coin tosses. Let f(X) denote this expected time if the last toss was X.
Then, f(H) = 1

2 · 1 + 1
2 · (1 + f(T )) = 1 + 1

2f(T ) and f(T ) = 1 + 1
2f(H). This implies that

f(T ) = f(H) = 2. Hence, our final answer is 2 + 2 = 4 (where we add the first segment and
the first rotated segment).

5. Ryan chooses five subsets S1, S2, S3, S4, S5 of {1, 2, 3, 4, 5, 6, 7} such that |S1| = 1, |S2| = 2, |S3| =
3, |S4| = 4, and |S5| = 5. Moreover, for all 1 ≤ i < j ≤ 5, either Si ∩ Sj = Si or Si ∩ Sj = ∅ (in
other words, the intersection of Si and Sj is either Si or the empty set). In how many ways can
Ryan select the sets?

Answer: 11760

Solution: Let S = {1, 2, 3, 4, 5, 6, 7}. Note that Si ∩ Sj = Si is equivalent to Si ⊆ Sj . We use
constructive counting and select S5 first, and then move down to S1. First, note that there are(
7
5

)
ways to choose S5. Now, S4 must be a subset of S5 (as if S4 ∩ S5 = ∅ then |S| ≥ 4 + 5 = 9),

so there are
(
5
4

)
ways to choose S4. Moreover, if S3 is not a subset of S4, then S3 = S −S4. But

then S3∩S5 ̸= S3 and S3∩S5 ̸= ∅, a contradiction. Thus S3 ⊆ S4 ⊆ S5 and it follows that there
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are
(
4
3

)
ways to choose S3. Now, either S2 is a subset of S3, or S2 ∩ S3 = ∅. In the first case,

there are
(
3
2

)
ways to choose S2. In the latter case, since S2 is not a subset of S3, it cannot be a

subset of S4 and S5. It follows that S2∩S4, S2∩S5 = ∅ and S2 = S−S5. Thus, there are
(
3
2

)
+1

total ways to select S2. Finally, note that S1 can be any of {1, 2, 3, 4, 5, 6, 7}. The answer is(
7

5

)(
5

4

)(
4

3

)((
3

2

)
+ 1

)
7

= 21 · 5 · 4 · 4 · 7 = 11760 .

6. We say that an integer x ∈ {1, · · · , 102} is square-ish if there exists some integer n such that
x ≡ n2 + n (mod 103). Compute the product of all square-ish integers modulo 103.

Answer: 52

Solution: Note that n2 +n ≡ (n+52)2 − 522. The set of square-ish residues is equal to the set
of residues of the form x2− 522. It is tempting to simply multiply out

∏
x x

2− 522, but we must
prevent multiplicity. Aside from the case x = 0, each residue has two values of x corresponding
to it, x and 103− x, so to prevent multiplicity it suffices to calculate

50∏
x=0

(x2 − 522) ≡
50∏
x=0

(x− 52)(x+ 52)

≡ (−52)(−51) · · · (−2) · (52)(53) · · · (102)
≡ (−2)(−3) · · · (−52) · (52)(53) · · · (102)
≡ (−1)51102! · 52 (mod 103).

By Wilson’s Theorem, 102! ≡ −1. Thus, the residue comes out to be (−1)52 · 52 = 52 .

7. Let S be the number of bijective functions f : {0, 1, . . . , 288} → {0, 1, . . . , 288} such that f((m+
n) mod 17) is divisible by 17 if and only if f(m) + f(n) is divisible by 17. Compute the largest
positive integer n such that 2n divides S.

Answer: 270

Solution: Since f is bijective, there exists some m ∈ {0, 1, . . . , 288} such that f(m) ≡ 0 mod 17.
For any integer k, since f(m + 17k mod 17) = f(m + 0) ≡ 0 mod 17, by the condition given in
the problem we also know that f(m)+ f(17k) ≡ 0 mod 17. This gives us f(17k) ≡ 0 mod 17 for
any integer k.

So, m + n ≡ 0 mod 17 if and only if f(m) + f(n) ≡ 0 mod 17. There are 8 pairs of residues
modulo 17 that sum to 17 (for example, (1, 16) is such a pair). Each pair is mapped by f
to another pair, so there are 8! ways to order them, and the residues within each pair can be
switched, giving us a factor of 28.

Then, in {0, 1, . . . , 288} there are 17 numbers for each residue modulo 17. Once the mappings of
residues modulo 17 have been determined, there are 17! ways to map each of the numbers with
the same residue. Thus, S = 28 · 8! · (17!)17. The exponent of the largest power of 2 that divides
S is 8 + (4 + 2 + 1) + 17(8 + 4 + 2 + 1) = 270 .

8. Define the Fibonacci numbers via F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

Olivia flips two fair coins at the same time, repeatedly, until she has flipped a tails on both, not
necessarily on the same throw. She records the number of pairs of flips c until this happens (not
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including the last pair, so if on the first flip both coins turned up tails c would be 0). What is
the expected value of Fc?

Answer: 19
11

Solution: Let a, b be the number of flips of each coin until tails. Then, we are looking for the
expected value of max(Fa, Fb).

Suppose that a = 0. Then, this expected value is

F0

2
+

F1

22
+

F2

23
+ · · · ,

that is, the regular expected value. However, if a = n then the expected value becomes

Fn

2
+

Fn

22
+ · · ·+ Fn

2n+1
+

Fn+1

2n+2
+ · · · = Fn ·

(
1− 1

2n+1

)
+

Fn+1

2n+2
+ · · ·

that is, the first n cases have numerator transformed into Fn. So, let fn be the expected value
given that a = n. Then, the quantity we are looking for is

E =
f0
2

+
f1
22

+
f2
23

+ · · ·

Let’s look at the contribution of Fn to this sum, since Fn can only appear in f0, f1, . . . , fn. In
the first n of these, Fn has a coefficient of 1

2n+1 and in the last one it has 1 − 1
2n+1 . So, its

contribution is

1

2n+1
·
(
1− 1

2n+1

)
+

1

2n+1

n−1∑
i=0

1

2i+1
=

1

2n+1
·
(
1− 1

2n+1
+ 1− 1

2n

)
=

2

2n+1
− 3

4n+1
.

Therefore, the sum we are looking for is

E =
∞∑
n=0

(
2

2n+1
− 3

4n+1

)
Fn.

It is well known (or done via generating functions) that

∞∑
n=0

Fnx
n+1 =

x2

1− x− x2

so our answer is

E = 2 ·
(
1
2

)2
1− 1

2 −
(
1
2

)2 − 3 ·
(
1
4

)2
1− 1

4 −
(
1
4

)2 =
19

11
.

9. Suppose a and b are positive integers with a curious property: (a3 − 3ab+ 1
2)

n + (b3 + 1
2)

n is an
integer for at least 3, but at most finitely many different choices of positive integers n. What is
the least possible value of a+ b?

Answer: 6

Solution: Observe that the condition (a3 − 3ab+ 1
2)

n + (b3 + 1
2)

n being an integer is equivalent
to (2a3 − 6ab+ 1)n + (2b3 + 1)n being divisible by 2n. If n is even, both powers are equal to 1
modulo 4, so the expression is never divisible by 4, contradiction.
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Meanwhile if n is odd, we can factor out (2a3−6ab+1)+(2b3+1) from the expression. The other
factor is a sum of n odd numbers, thus is odd. We thus demand that (2a3−6ab+1)+(2b3+1) =
2(a3 + b3 + 1− 3ab) be divisible by at least 3, but at most finitely many odd powers of 2.

If 2n | 2(a3 + b3 + 1− 3ab), of course all powers of 2 less than n also divide 2(a3 + b3 + 1− 3ab).
So it suffices to make (a3 + b3 + 1− 3ab) divisible by 16 (which would mean that 2, 8, 32 divide
2(a3 + b3 + 1 − 3ab)), but nonzero (if the expression is equal to zero, which is the case when
(a, b) = (1, 1), an infinite number of powers of 2 will divide it). Factoring, (a3 + b3 + 1− 3ab) =
(a+ b+ 1)(a2 + b2 + 1− ab− a− b).

Because a2−a, b2− b are always even, (a2+ b2+1−ab−a− b) is even iff ab−1 is even iff a, b are
both odd, in which case a+ b+1 is odd. So, either 16 | a+ b+1, or 16 | (a2+ b2+1−ab−a− b).
In the former case, we have a+b at least 15. In the latter case, setting a = 1 and experimenting,
we see that (a, b) = (1, 5) is a valid pair, whereas any pair with smaller sum will not work. Thus
1 + 5 = 6 is the solution desired.

10. Colin has a peculiar 12-sided dice: it is made up of two regular hexagonal pyramids. Colin wants
to paint each face one of three colors so that no two adjacent faces on the same pyramid have
the same color. How many ways can he do this? Two paintings are considered identical if there
is a way to rotate or flip the dice to go from one to the other. Faces are adjacent if they share
an edge.

Answer: 405

Solution: Consider how we can rotate the dice. We can rotate either about the axis containing
the vertices with six faces adjoining them, or around one of the vertices with four faces. Note
that doing two rotations about the “central” vertices is equivalent to doing none, and rotations
are just reversed when in a rotated state. Furthermore, the flip operation is a central rotation
combined with three top rotations. Hence, there are 12 symmetries. Let G be the set of these
symmetries and for each g ∈ G, let f(g) the number of ways to draw on the faces such that
applying g does nothing (for example, if g is a rotation by one face, then f(g) is 0 since it would
imply two adjacent faces are equal). By Burnside’s Lemma, the answer then is 1

12

∑
g∈G f(g).

For convenience, label the top pyramid as having faces a1, a2, . . . , a6 and the bottom pyramid
as having b1, b2, . . . , b6. Let c(x) be the color of the face x.

With this in mind, let’s compute f(g) for each g. First, we look at the symmetries with no flips
(that is, just rotations). As stated previously, if the rotation is by 1 or 5 then f(g) is 0 since
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two adjacent faces will be equal. Next, consider a rotation by 2 or 4. These imply that every
other face in each of the pyramids is equal. Therefore, there are (3 · 2)2 = 36 possible colorings.

Next, let’s look at a rotation by 3. Then, c(a1), c(a2), c(a3) must all be distinct. There are again
(3!)2 = 36 possible colorings.

Finally, among the rotations the final case is no rotation (that is, the identity symmetry).
In this case, each of the pyramids must have no two adjacent faces having the same color
(with no other restrictions). Let f(n) be the number of ways to do this if the pyramid had n
faces instead of just 6. If c(a1) ̸= c(an−1), then we c(an) has only one possibility. If c(a1) =
c(an−1), then c(a1) ̸= c(an−2) and there are two possible assignments for c(an), c(an−1). Hence,
f(n) = f(n − 1) + 2f(n − 2). With the base cases f(2) = 6, f(3) = 6, we can quickly compute
f(4) = 18, f(5) = 30, f(6) = 66 (alternatively, one can compute f(n) = 2n + 2 · (−1)n). Hence,
this case gives 662 = 4356.

Now, consider each of the flip symmetries. In fact, each of these contribute 66: for example, just
a flip implies that a1 = b4, a2 = b3, a3 = b2, a4 = b1, a5 = b6, a6 = b5. Hence, the two colorings
must be identical up to reflection and translation.

Therefore, our answer is

1

12
(36 · 2 + 36 + 4356 + 66 · 6) = 405 .


