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1. There exists a unique real value of x such that

(z +Vx)? = 16.

Compute x.
Answer: B_T‘/ﬁ
Solution: In order for v/z to be defined, x > 0. Then x + \/x > 0 and = + /z = 4. Letting

y = x, we get y>2 +y —4 = 0 which by the quadratic formula has solutions %ﬁ As

y = +/x >0, it follows that y = 71%‘/? and

o 18—-2V17T | 9— /17
N 4 B 2 |

r=Yy

2. Compute the number of values of = in the interval [—11m, —27] that satisfy % =0.

Answer: 4

Solution: The fraction is equal to zero when its numerator is equal to zero and its denominator
is not equal to zero. The solutions to 5 cos(z) +4 = 0 are of the form x = £ arccos(—4/5) + 27k
for integer k. The solutions to 5sin(x) + 3 = 0 are of the form x = 4+ arcsin(—3/5) + 27k for
integer k. We see that every interval of the form [2km, (2k + 1)7] has one solution to the given
equation and intervals of the form [(2k + 1), (2k + 2)7] have no solutions. Thus, there are
solutions in the interval [—11m, —27].

3. Nathan has discovered a new way to construct chocolate bars, but it’s expensive! He starts with
a single 1 x 1 square of chocolate and then adds more rows and columns from there. If his current
bar has dimensions w x h (w columns and h rows), then it costs w? dollars to add another row
and h? dollars to add another column. What is the minimum cost to get his chocolate bar to
size 20 x 207

Answer: 5339

Solution: The optimal way to add rows and columns to the 1 x 1 chocolate to the 20 x 20
chocolate is to alternate adding rows and columns. (A rough proof of this is below.) If we
do this, then the costs are 1% for the first row, plus 22 for the first column, plus 22 for the
second row, plus 32 + 32 + 42 + .... The formula for the overall cost to get to n x n is 12 +
2.2242.32 4+ ... 42 (n—1)2+n% The sum of the first n squares can be calculated as
w. Thus, we can simplify our desired sum to w — 1 —n?. For n = 20 this

equals 20241 1 — 202 = 5339 ],

Proof: Assume w > h (more columns than rows). Adding a column and then a row costs
h? + (w + 1)2. Adding a row and then a column costs w? + (h + 1)2. Since w > h, we have
B2+ (w+1)2=h2+w?+2w+1>h?+w?+2h+1=w?+ (h+ 1) Therefore, it’s always
more optimal to add a row first in this case. We can see that alternating rows and columns is
optimal.

4. If the sum of the real roots = to each of the equations

1
2x r+1

for k =2,3,...,2023 is N, what is 2V?
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1012
2023

Solution: Define y = 2%. Then, we can define the quadratic as y?> — 2y + 1 — 2. Through
quadratic formula or inspection, we notice that this quadratic can be factored as (y—(1—1))(y—
(1+1)). Hence, y = 1 & 1. Thus, 2° = 1 & + — 2 =logy(1 £ £).

Answer:

Note that the sum of the two solutions to a single equation is log, (1 ) log, ( 1) =

log, <(k_1,1++1)) . The sum of all solutions to the equations is then

1-3 2-4 2022 - 2024
N = 10g2 22 =+ 10g2 ? + ...+ 10g2 W

1- 3 2- 4 2022 - 2024
< 20232 >

— log, (1 2024>
2-2023

~ log, (1012)
2023

1012
We have 2V = 2003 |

5. Suppose «, 3,7 € {—2,3} are chosen such that

M = max min ax + By + yxy
zeR y€R>O

is finite and positive (note: R>q is the set of nonnegative real numbers). What is the sum of the
possible values of M?

Answer: %

Solution: We have

max min ax + [y + yry = max min ax + y(8 + yz)

z€R yeR>o €R yeR>o
Note that if 8 + yx < 0, then by increasing y, the minimum could be arbitrarily small, so to
maximize the value, it is never a good strategy to pick such an z. Thus, we will choose x such
that 8 4+ ~vax > 0, and this forces y = 0 as the best choice for y. This gives us

max min oz +y(f+yr) = max ax.
z€R yeR>q z€R,B+v2>0

The constraint S+ ~vx > 0 is equivalent to yx > —f. Note that a and v must not have the same
sign, as otherwise by making z very large with the same sign as « and v, we can satisfy the
constraint and cause the value of ax to diverge.

In order for M to be positive, & and & must have the same sign. Then, vz is 0 or a negative

value. From the constraint yx > —f., we see that we must have § > 0,i.e. § = 3. The maximum

possible value of x that satisfies the constraint is —g, which gives us

af
max ar = ———.
z€R,f+vx>0 y
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The possible values of /v are —2/3 and —3/2. Therefore, the possible values of M are 2 or
9/2, whose sum is | 13/2 |.

6. What is the area of the figure in the complex plane enclosed by the origin and the set of all
points 1 such that (1 — 2i)z + (—2i — 1)z = 647
5T

Answer: 36

Solution 1: We can rewrite (1—2i)z+(—2i—1)z = 6i as 257 = 2+2+3. If we let z = z+yi, this is
equivalent to the equation y = 2x+3. Suppose that a point u = 1 where (1—2i)z+(—2i—1)z = 61.

— ; —1__v _
Let u = v 4+ wr. Then,z—u—,uhrw2 U2+w21 and we must also have
w v
o2 5 =25 5 13
vt w vt w

This can be rewritten as

1\° 1\ 5
Note that we cannot allow v? + w? = 0 but the origin is still included in the set of points we
oT
36|
Solution 2: Alternatively, one can note that the resulting set of points is the inversion of the

line y = —2:c — 3 with respect to the unit circle The perpendicular line passing through the
origin, y = %, intersects y = —2x — 3 at —2 1, which has a magnitude of \[ so its inversion

consider given the problem statement. The area of the circle described by this equation is

5
in the unit c1rcle has a magnitude of ‘[ ThlS is the diameter of the resulting circle, so we get
T
36 |
Solution 3: To obtain a different inversive solution, let w = (1 — 2¢)z. Then, w —w = 67 so
the set of all feasible w is parametrized by the line x 4+ 3i. Hence, i describes a circle centered

an area of

at %z’ and of radius é. The area encompassed by this circle is 55. However, since |w|? = %\z|2
as |1 — 2i|? = 5, it follows that the area encompassed by % is precisely 5 times that of i This
o

once more gives

% .

7. Consider a sequence Fy = 2, F| = 3 that has the property Fy, 1F, 1 — F? = (—1)" - 2. If each
term of the sequence can be written in the form a - ] + b - 7y, what is the positive difference
between r1 and ro?

Answer:

3

Solution: Listing out the first few terms of the sequence, we have Fy = 2, F; = 3, F5 = %, F5 =
14—9, Fy = %. Note that the terms of the sequence satisfy the recursive relation F, 11 = % +F,_1.
We will prove this inductively. Suppose that we already know that the property given in the

problem and the recursive relation are satisfied for all F;, with n < k. Then, we want to show that

if Fjy1 = 24 g then Fiy Fyo—F2 = (—1)F-2. We have Fy 1 Fj,_—Ff = D01 g2 p2
Note that FiFj_o — Fk2—1 = (—1)”71 -2 = Fk2—1 = FLF)_5+ (_1)n - 2. So,
FyFy_ FyFy
’“2’“ Ly R - F2= ’f2’“ Ly FuFy o+ (—1)" -2 — F}
e
= F( ’“2 Ly By — F) + (=)™ -2

= F, -0+ (-1)"-2,
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which proves our claim. Now we know that the characteristic equation of the recurrence is

22 = 5 + 1, and solving for x we get © = &#ﬁ_ These are the values of r1 and ry, so their
V17

positive difference is — |

8. If x and y are real numbers, compute the minimum possible value of

4zy(32% + 10zy + 632)
x4 + 4yt '

Answer: —1

Solution: Note that z# + 4y* = (22 + 2y? + 22y) (22 + 2y* — 2zy) through the Sophie Germain
identity. Also, the numerator can be written as

dzy (3% + 10xy + 6y2) = 1203y + 4022y? + 24xy3
= 5zt + 1223y + 4022y? + 24xy® + 20y — 5(zt + 4yh)
= (2% 4 2y — 22y)? + 4(z® + 2y% + 22y)? — 5(2? + 4yt).
Then, we can decompose the given fraction as
(22 4+ 292 — 22y)? + 4(2? + 2y2 + 22y)? e (22 4+ 292 — 2zy)  4(2? + 292 + 22y)
(2 + 2y? + 2zy) (2? + 2y? — 2zy) (22 +2y% + 2zy) (22 + 2y2 — 2xy)
By the AM-GM inequality, we have

(22 4+ 292 — 2zy)  4(2? + 292 + 2xy) > 4
(22 +2y2 4+ 2zy) (22 +2y% —22y) —

so the minimum possible value of the original expression is .

9. Let x,y, z be nonzero numbers, not necessarily real, such that

(z—y)?+@y—2°+(z—2)° =24y

and ) ) )
x z
I 42 —3
yz  zx  xy
Compute Z—Z
Answer: 5
Solution: Via factoring, we get
22 2 22 .

yz  zx  wy
implies
(x+y+2) (@ +y*+ 22 —ay—yz—22) =0
or
(z+y+2)((z—y)P+y—2)>+(z—2)}) =24z +y+2)yz =0.



STANFORD 20
l‘/\ATH 23

OURNAMENT

ALGEBRA TEST SOLUTIONS APRIL 8, 2023

Asy,z#0, we have vt +y+ 2 =0o0r v = —y — 2. Then

2 2 2 2
x —y — z + 2yz + 2 z
Yz Yyz Yyz z Yy

Now, substituting —y — z for x in the first equation gives us

2 (y—2 4+ 4y +2)?2 =4 vdyz+ 22+ y* — 2yz + 22 4y +dyz + 427

= 6y° 4 622 + 6yz
= 24yz,

(= (2) 1o

By the Quadratic Formula, we have

(—y—2z—y)

or

Y _ 3++5
2 2
It follows that the answer is

z 3—vV5 34V
y—l—*+2: \[+ \[+2
z Y 2 2

:‘

10. Suppose that p(z), g(x) are monic polynomials with nonnegative integer coefficients such that

1 1
—_ >

1
> il
~q(z) plx) ~ 3a?

1
T
for all integers z > 2. Compute the minimum possible value of p(1) - ¢(1).

Answer: 3

Solution: Rearranging the right side, we have that 322(p(z) — q(x)) > p(x)q(z). By degree
matching, it must be the case that degp > degq and degq < 2.

Suppose first that degq = 1: that is, ¢(z) = x + k for some k. Then, we need

1 1 1 1
> >
10-k+2 p@2) ~ 12
p(z) must also be linear, as otherwise 5z would eclipse ¢(z) for large x.
Then, we are looking to minimize (1 + k)(1 + ¢) such that & > k:+2 €J1r2 > & Fortunately,

in this particular case minimizing (1 + k)(1 + ¢) turns out to be equivalent to minimizing k. To
see this, fix k: As ¢ > k increases, there is a contiguous (possibly empty) range of ¢ such that

% > ki2 ya) +2 > 1 1 . Furthermore, as k increases, the start point of this range also increases.
So, since 3 — 1 = % minimizes k and ¢, this gives p(1)q(1) = 6.

Now, suppose that degq = 2 and recall the condition q(x)p(z) < 322(p(z) — q(x)). If degp = 2
as well, by monicity the right-hand side would have a degree of at most 3, impossible. So,
degp > 3.

Since p(1), ¢(1) are exactly the sums of coefficients of p, ¢ it must imply that to beat the linear
case we need a small number of coefficients.
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First, we dispose of cases when ¢q(x) = 22. Indeed, note that at z = 2, + — 1 > 10 so any p(z)
with leading coefficient at least 23 cannot work. Next, look at p(z) = l‘k By some casework,
we see that k = 3 leads to no solutions at z = 2 (as % - % < &) and similarly for k = 4 (as
t—%>&and 1 - L& <) However at k = 5 we find the solution ¢(z) = x? + 2x. This
yields p(1)g(1) = 3. If k > 5 then ﬂ < 64 so ¢(2) must increase. However, increasing ¢(2)

5

must increase either the x or constant coefficient. Hence, p(x) = x° is optimal.

If both ¢ and p have a non-leading term, then p(1)g(1) > 4 so our answer must indeed be .

Finally, we will check that é > ﬁ — x—lg, > 3% to verify the correctness of our solution. Since

for all z > 3 we have 22 + 2z > 5z, the left side must be satisfied.

For the right side, note that for all x > 2, i m This follows as 2z < 22 so 2(z% +22) <

4z? < x* < 25 Furthermore, for all z > 3 2(x? 4+ 1) < 322 (since rearranging yields 22 > 2).

Therefore,
1 1 1 1

— > >
22+1 23417 2(22+1) — 3a?

as desired.



