
SMT 2022 Team Test Solutions April 16–17, 2022

1. Square ABCD has side length 2. Let the midpoint of BC be E. What is the area of the
overlapping region between the circle centered at E with radius 1 and the circle centered at
D with radius 2? (You may express your answer using inverse trigonometry functions of non-
common values.)

Answer: 3 arctan
(
1
2

)
+ π

2
− 2

Solution: We can find the overlapping area by adding together the sector of circle D along
minor arc CF and the sector of circle E along minor arc CF, and subtracting CDFE. The
area of CDFE is 2 (formed by adding together △CDE and △FDE, each with area 1). Then,

the area of the sector of circle D is
2 arcsin

(
1√
5

)
2π · 4π and the area of the sector of circle E is

2 arcsin
(

2√
5

)
2π · π. Our answer then is

2 arcsin
(

1√
5

)
2π

· 4π +
2arcsin

(
2√
5

)
2π

· π − 2 = 4 arcsin

(
1√
5

)
+ arcsin

(
2√
5

)
− 2

= 4 arcsin

(
1√
5

)
+

π

2
− arcsin

(
1√
5

)
− 2

= 3 arcsin

(
1√
5

)
+

π

2
− 2

= 3 arctan

(
1

2

)
+

π

2
− 2 .

Note that there are other equivalent forms of the answer.

2. Find the number of times f(x) = 2 occurs when 0 ≤ x ≤ 2022π for the function

f(x) = 2x(cos(x) + 1).

Answer: 2023

Solution: In the following n always denotes an integer between 0 and 2022.
We know that cos(x) + 1 = 2 for x = 2nπ, and that cos(x) + 1 = 0 for x = (2n+ 1)π.
By the intermediate value theorem, it is obvious that in the interval nπ < x < (n+1)π, cos(x)+1
attains all values between 0 and 2 exclusive.
We have that for all intervals nπ < x < (n + 1)π in the domain that 0 < 2−x < 2, and so we
must have some 0 < x < (n+ 1)π such that cos(x) + 1 = 2−x.
This finds us 2022 solutions, since there are 2022 such disjoint open intervals of the form (nπ,
(n+ 1)π) in the domain.
Then all that remain are to consider the points where x = nπ (the endpoints of these intervals)
which we easily see can only leave the additional solution x = 0. This finds us our additional
one solution, so there are 2022 + 1 = 2023 solutions in total.

3. Stanford is building a new dorm for students, and they are looking to offer 2 room configurations:

• Configuration A: a one-room double, which is a square with side length of x;

• Configuration B: a two-room double, which is two connected rooms, each of them squares
with a side length of y.
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To make things fair for everyone, Stanford wants a one-room double (rooms of configuration A)
to be exactly 1m2 larger than the total area of a two-room double. Find the number of possible
pairs of side lengths (x, y), where x ∈ N, y ∈ N, such that x− y < 2022.

Answer: 5

Solution: We are looking for solutions to

x2 − 2y2 = 1.

Note that this is an example of Pell’s equation, and so if (x0, y0) is the smallest possible solution
(also called fundamental solution), we can generate an infinite array of solutions via the recurrent
formulas

xn+1 = x0xn + 2y0yn

yn+1 = y0xn + x0yn.

It is easy to observe that (3, 2) is the fundamental solution, and from there we can easily build
the solutions (3, 2), (17, 12), (17, 12), (99, 50), (497, 348), (2883, 2038), and the next one is
(16801, 11880), which is clearly has a difference larger than 2022 (note than the question only
asks for the number of solutions, so these need not be precisely calculated). Therefore, the
answer is 5.

4. The island nation of Ur is comprised of 6 islands. One day, people decide to create island-states
as follows. Each island randomly chooses one of the other five islands and builds a bridge between
the two islands (it is possible for two bridges to be built between islands A and B if each island
chooses the other). Then, all islands connected by bridges together form an island-state. What
is the expected number of island-states Ur is divided into?

Answer: 3493
3125

Solution 1: Consider the directed graph on 6 vertices formed by considering each island as a
vertex and each bridge as a directed edge from the island which constructed the bridge. Then,
we see that each vertex has out-degree 1 and the expected number of island-states or connected
components is exactly the number of cycles formed in this graph. For i = 2, 3, . . . , 6, there
are

(
6
i

)
(i− 1)! difference cycles of length i and the probability of each occurring is 1

5i
, thus the

expected number of cycles and thus island states is

6∑
i=2

(
6
i

)
(i− 1)!

5i
=

3493

3125
.

Solution 2: There are only a few ways that the islands can be divided into island-states, since
it is not possible for one island to form an island-state by itself. The possibilities are 2 + 2 + 2,
2 + 4, 3 + 3, and 6.

Case 2 + 2 + 2: We can split the island-states in
(62)(

4
2)(

2
2)

3! = 15 ways.

Case 2 + 4: We can split the island-states in
(
6
2

)
= 15 ways. Within the island-state of size 4,

each island can choose to build a bridge to any other island, except we cannot allow them to be
partitioned as 2+ 2. There are 3 ways to partition them as 2+ 2 (island a can be paired with b,
c, or d), so we subtract to get 34 − 3 = 78. Then, the total number of ways to build the bridges
for this case is 15 · 78 = 1170.

Case 3 + 3: We can split the island-states in
(63)(

3
3)

2! = 10 ways. Within each island-state of size
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3, it is not possible for the island-state to be partitioned into smaller island-states, so each island
can connect to any other island, giving us 10 · 23 · 23 = 640.
Case 6: We subtract the number of possibilities for the previous case from the total number of
possibilities to get 56 − 640− 1170− 15 = 13800.

Thus, the expected number of island-states is 15·3+1170·2+640·2+13800·1
56

=
3493

3125
.

5. Let a, b, and c be the roots of the polynomial x3 − 3x2 − 4x+ 5. Compute

a4 + b4

a+ b
+

b4 + c4

b+ c
+

c4 + a4

c+ a
.

Answer: 869
7

Solution: Vieta’s formulas tell us that a + b + c = 3, and thus we can rewrite the expression
has

a4 + b4

3− c
+

b4 + c4

3− a
+

c4 + a4

3− b

Combining everything under a common denominator gives us

(a4 + b4)(3− a)(3− b) + (b4 + c4)(3− b)(3− c) + (c4 + a4)(3− c)(3− a)

(3− a)(3− b)(3− c)

Denote Sk = ak + bk + ck. Now, by expanding the numerator and regrouping terms, we obtain

18S4 − 6S5 − 3S4S1 + 3S5 + S5S1 − S6

27− 9(a+ b+ c) + 3(ab+ bc+ ca)− abc

We can derive from Vieta’s formulas and Newton’s sums that S1 = 3, S2 = 17, and S3 = 48.
Now, using the fact that Sk = 3Sk−1 +4Sk−2 − 5Sk−3, then we can compute S3 = 48, S4 = 197,

S5 = 698, and S6 = 2642. Putting this all together, we get a value of
869

7
.

6. Carol writes a program that finds all paths on an 10 by 2 grid from cell (1, 1) to cell (10, 2)
subject to the conditions that a path does not visit any cell more than once and at each step
the path can go up, down, left, or right from the current cell, excluding moves that would make
the path leave the grid. What is the total length of all such paths? (The length of a path is the
number of cells it passes through, including the starting and ending cells.)

Answer: 7680

Solution: First, we claim that the number of such paths for a n by 2 grid, which we denote
tn, is 2n−1. The number of such paths from (1, 1) to (n, 1), which we denote bn, is also 2n−1.
We can prove this by induction. Note that any such path cannot move to the right without
visiting a previous cell again. For our base case, we see that in a 1 by 2 grid, clearly there is
only 1 path to (1, 2) and only 1 path to (1, 1) (the path that just consists of the cell (1, 1)).
For the inductive step, we see that the number of paths to cell (n, 2) is equal to the sum of
the number of paths to (n − 1, 1) and (n − 1, 2), and we have the same for (n, 1). This means
that tn = tn−1 + bn−1 = 2n−2 + 2n−2 = 2n−1. Similarly, we also have bn = 2n−1, completing the
inductive step.
Now, to count the total length of all paths, we can count the number of paths passing through
each cell and add all of these values. For a cell (k, 2) where 1 < k < n, we see that the number
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of paths passing through is tk−1bn−k+1 + bk−1bn−k = 2k−22n−k + 2k−22n−k−1 = 3
(
2n−3

)
. We

can see similarly that the number of paths passing through (k, 1) is (3)
(
2n−3

)
.

Now we look at the cells (1, 1), (1, 2), (n, 1), and (n, 2). Every path passes through the starting
and ending cells, so 2n−1 paths each pass through (1, 1) and (n, 2). If a path goes to cell (1, 2),
then the number of paths to (n, 2) is bn−1 = 2n−2. Similarly, the number of paths through (n, 1)
is also 2n−2. Summing these values, we have 2n−1 + 2n−1 + 2n−2 + 2n−2 = (3)

(
2n−1

)
. Our

total then is (3)
(
2n−1

)
+(2n− 4)(3)

(
2n−3

)
= (3)

(
2n−1 + (n− 2)

(
2n−2

))
. Letting n = 10 gives

(3)(29 + (8)(28)) = 7680 .

7. Consider the sequence of integers an defined by a1 = 1, ap = p for prime p and

amn = man + nam

for m,n > 1. Find the smallest n such that
an2

2022
is a perfect power of 3.

Answer: 3337

Solution 1: Dividing by mn on both sides of amn = man + nam we get

amn

mn
=

an
n

+
am
m

.

Therefore, we can build up to

an1n2...nk

n1n2 . . . nk
=

k∑
i=1

ani

ni

Now, if the canonical prime factorization of n is n =
∏

i p
αi
i , we get

n2 =
∏
i

p2αi
i =⇒ an2

n2
=
∑
i

2αiapi
pi

= 2
∑
i

αi

pi

Multiplying by n2 on both sides, we can get an expression for an2 as

an2 = 2

(∏
i

p2αi
i

)∑
i

αiapi
pi

We want
an2

2022 to be a perfect power of 3, hence an2 = 2022 · 3r = 2 · 3r+1 · 337. Since 2 is already
a factor in an2 , we can conclude that n can have at most 2 prime factors, namely 3 and 337.

Case 1: n = pα ⇔ αp2α−1 = 337 · 3r+1. Obviously, p ̸= 337, since r > 0, and so, p = 3, α = 337,
and we get n = 3337.

Case 2: n = 3α · 337. It is easy to check that 337 cannot be raised to any power beyond 1. Now
we have

an2 = 2 · 32α−1 · 337(337α+ 3) = 2 · 3r+1 · 337

Therefore, we have 337α + 3 = 3t for some t. From here, we can express α = 3t−3
337 , from which

follows that 3t−1 ≡ 1(mod 337). Note that we are looking only for candidate values of α < 337, or
equivalently 5 < t < 11. We can quickly check that none of the values for t work (note that the
smallest t is 169, i.e. the multiplicative order ord337(3) = 168), and so, the minimum solution
is n = 3337.

Solution 2: Begin as before, having amn
mn = am

m + an
n . Now, let bn = an

n . Then, if n =

pe11 · pe22 · . . . · pekk , we can see that bn =
∑k

i=1 ek by removing one such factor and inducting.
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In addition, bn2 = 2bn so an2 = 2n2bn. Hence,
an2

2·3·337 = n2·bn
3·337 . This implies that 337 ∤ n, as

otherwise n2

337 would have an extra factor. Hence, n2 = 32k for some k, and n2 · bn = k · 32k.
Therefore, we need k = 337 (since 337 | k) for minimality and therefore n = 3337.

8. Let △ABC be a triangle whose A-excircle, B-excircle, and C-excircle have radii RA, RB, and

RC , respectively (the A-excircle is the circle outside △ABC that is tangent to BC,
−−→
AB, and

−→
AC—the other excircles are defined similarly). If RARBRC = 384 and the perimeter of △ABC
is 32, what is the area of △ABC?

Answer: 24

Solution: Let the A-excircle be tangent to BC,
−−→
AB, and

−→
AC at D,E, and F, respectively, and

let the center of the A-excircle be OA. Since the A-excircle is tangent at these points, we have
BD = BE and CD = CF. Then,

[ABC] = [AEOA] + [AFOA]− [BDOAE]− [CDOAF ]

=
1

2
RA(AB +BE +AC + CF −BD −BE − CD − CF )

=
1

2
RA(AB +AC −BC)

= RA(s−BC),

where s is the semiperimeter of △ABC. So, RA = [ABC]
s−BC and we can also see that RB = [ABC]

s−AC ,

RC = [ABC]
s−AB . Then,

RARBRC =
[ABC]3

(s−BC)(s−AC)(s−AB)

=
s[ABC]3

s(s−BC)(s−AC)(s−AB)

=
s[ABC]3

[ABC]2

= s[ABC].

Finally, we have [ABC] = RARBRC
s = 384

16 = 24 .

9. Consider the set S of functions f : {1, 2, . . . , 16} → {1, 2, . . . , 243} satisfying:

(a) f(1) = 1

(b) f(n2) = n2f(n),

(c) n | f(n),
(d) f(lcm(m,n))f(gcd(m,n)) = f(m)f(n).

If |S| can be written as pe11 ·pe22 ·. . .·pekk where pi are distinct primes, compute p1e1+p2e2+. . .+pkek.

Answer: 91

Solution: Let g(n) = f(n)
n . Then, g(n2) = ng(n) and the fourth property is still satisfied for g.

The only major change is the range on g.

Note that the first property guarantees that g(1) = 1. In addition, if gcd(m,n) = 1, then we
have f(mn) = f(m)f(n), so f is multiplicative. So, it suffices to specify g(pk). By the first
property, given g(p) we have all g(p2

i
). Therefore, we only need to give g(pk) for odd k.
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Notice that if pk ≥ 8, then g(pk) can take on any value from 1 to 243/pk (as we can never
multiply by it and still be within range of 16). The only three possibilities are 8, 11, and 13. In
total, these contribute 30 · 22 · 18. Now, we must have g(16) = 8g(2) ≤ m/16, so g(2) ≤ 243

128 , so
g(2) = 1. In addition, we must have g(9) = 3g(3) ≤ m/9, so g(3) ≤ 243

27 = 9.

So, the remaining unspecified values are g(5) and g(7). We can bound these via g(15) =
g(3)g(5) ≤ 243

15 = 16 and g(14) = g(2)g(7) = g(7) ≤ 243
14 = 17.

So, the total number of solutions is 30 · 22 · 18 · 17 · (16 + 8 + 5 + 4 + 3 + 2 + 2 + 2 + 1) =
2 ·3 ·5 ·2 ·11 ·2 ·32 ·17 ·43 = 23 ·33 ·5 ·11 ·17 ·43. The answer then is 6+9+5+11+17+43 = 91 .

10. You are given that log10 2 ≈ 0.3010 and that the first (leftmost) two digits of 21000 are 10.
Compute the number of integers n with 1000 ≤ n ≤ 2000 such that 2n starts with either the
digit 8 or 9 (in base 10).

Answer: 97

Solution: Consider the “runs” of first digits that can happen. These are (1, 2, 4, 8); (1, 2, 4, 9);
(1, 2, 5); (1, 3, 6); (1, 3, 7). So, 2n starts with the digit 8 or 9 if and only if it has a length 4 run
until we get another decimal digit.

So, if let x be the number of runs of length 3 and y be the number of runs of length 4. If 2n

starts with a 1, then that means 20, 21, . . . , 2n−1 have 3x + 4y = n total terms, and since each
run ends with getting a new digit, x+ y = ⌊log10 2n−1 + 1⌋. So, y = n− 3⌊(n− 1) log10 2 + 1⌋.
Since 21000 starts with a 1, the number of 2k starting with 8 or 9 with k ≤ 1000 is 1000 −
3⌊999 log10 2 + 1⌋ = 97.

Since 21000 starts with 10, then 22000 starts with 1 as well.

Therefore, the number of 2k starting with 8 or 9 with k ≤ 2000 is 2000−3⌊1999 log10 2+1⌋ = 194.
Therefore, our answer is 194− 97 = 97 .

11. Let O be the circumcenter of △ABC. Let M be the midpoint of BC, and let E and F be the
feet of the altitudes from B and C, respectively, onto the opposite sides. EF intersects BC at P .
The line passing through O and perpendicular to BC intersects the circumcircle of △ABC at L
(on the major arc BC) and N , and intersects BC at M . Point Q lies on the line LA such that
OQ is perpendicular to AP . Given that ∠BAC = 60◦ and ∠AMC = 60◦, compute OQ/AP .

Answer: 2√
3

Solution: Let H be the orthocenter of △ABC and draw MH. Notice that MH ∥ OQ so

OQ = MH · ON

MN
= MH · ON

NC sin
(
1
2∠BAC

) = 2MH.

H is the orthocenter of △AMP so AP =
√
3MH. OQ/AP =

2√
3
.

To see that MH ∥ OQ, note first that OM ∥ AH since they are both perpendicular to BC. Let
OQ intersect AH at pointO′. Then, it suffices to show thatOM = O′H. Since△QLN ∼ △QAH,
we see that because O is the midpoint of LN, O′ is the midpoint of AH. Then, what we want
to show is equivalent to OM = 1

2AH. Let CO intersect the circumcircle again at C ′. Since
BC ′ = 2OM, we want to show that BC ′ = AH. We know BCC ′ is a 30-60-90 triangle, so
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BC ′ = 1
2CC ′ = R, where R is the circumradius of △ABC. We see that ∠C ′BH = ∠C ′BA +

∠ABH = ∠C ′CA+90◦ −∠A = ∠C − 30◦ +90◦ − 60◦ = ∠C. Also, ∠BC ′A = 180◦ −∠C. This
proves that C ′BHA is a parallelogram, so BC ′ = AH = R, proving the claim.

Note that we only need the fact that ∠A = 60◦ to say that AH = R. This means in △AMP
we have MH = R′, where R′ is the circumradius of △AMP. We find that AP =

√
3R′ from the

Law of Sines, which means AP =
√
3MH.

12. Let T be the isosceles triangle with side lengths 5, 5, 6. Arpit and Katherine simultaneously
choose points A and K within this triangle, and compute d(A,K), the squared distance between
the two points. Suppose that Arpit chooses a random point A within T . Katherine plays the
(possibly randomized) strategy which given Arpit’s strategy minimizes the expected value of
d(A,K). Compute this value.

Answer: 43
18

Solution: Place the triangle such that the vertices are A = (−3, 4), B = (0, 0), and C = (3, 4).
We claim that Katherine’s optimal strategy is to deterministically play the centroid of this
triangle: (0, 83). Notice that the area of this triangle is 12, so we have a uniform distribution
over the triangle with p(x, y) = 1

12 . To parametrize the triangle, notice that for a given y, the
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range of x is [−3
4y,

3
4y]. So, the expected value of d(A,K) is

1

12

∫ 4

0

∫ 3
4
y

− 3
4
y

[
x2 +

(
8

3
− y

)2
]
dx dy =

1

12

∫ 4

0

 x3

3
+

(
8

3
− y

)2

· x

∣∣∣∣∣
3
4
y

x=− 3
4
y

 dy

=
1

12

∫ 4

0

57

32
y3 − 8y2 +

32

3
y dy

=
1

12

[
57

128
y4 − 8

3
y3 +

16

3
y2
∣∣∣∣4
y=0

]

=
1

2

(
114− 512

3
+

256

3

)
=

86

36

=
43

18
.

Now we show that this is indeed the optimal strategy. Let p(x, y) be Katherine’s strategy: in
other words, she selects point (x, y) with “probability” p(x, y).

We first note that it is optimal for Katherine to only play along x = 0. Indeed, consider any

strategy p for Katherine, and let p′ be such that p′(0, y) =
∫ 3

4
y

− 3
4
y
p(x, y) dx and p′(x, y) = 0

otherwise. Then consider the following process: Arpit selects a random point (a, b) with a ≥ 0
and then with probability 1

2 flips a. Note that this is equivalent to choosing a random point in
the triangle. So, he selects one of (a, b) and (−a, b) at random. We consider the contribution
of Katherine’s strategy to the expected value along y = b (note that we can fix any y, this just
allows the y term to be 0). Then, Katherine’s strategy incurs loss (proportional to)

1

2

[∫ 3
4
y

− 3
4
y
(x− a)2p(x, y) dx+

∫ 3
4
y

− 3
4
y
(x+ a)2p(x, y) dx

]
=

∫ 3
4
y

− 3
4
y
[x2 + a2]p(x, y) dx ≥ a2p′(0, y)

where equality is reached exactly where p = p′. Generalizing over all points Arpit could choose,
we still have that p′ outperforms p.

So, Katherine’s strategy p is only nonzero along the y-axis. So, it suffices for us to only look at

the contribution from y. Note that Arpit has y-coordinate c with probability
3
4
c−(− 3

4
c)

12 = c
8 . So,

suppose Arpit chooses a coordinate c and Katherine chooses a coordinate y. Then, the expected
loss is ∫ 4

0

∫ 4

0
(y − c)2 · c

8
· p(0, y) dcdy =

∫ 4

0
[y2 − 16

3
y + 8]p(0, y) dy.

So, it suffices to minimize the inner quantity and set p(0, y) = 1 at that minimizer y. This is a
parabola with vertex 8

3 , so this implies that Katherine’s strategy should be to always play (0, 83)
and we are done.

13. For a regular polygon S with n sides, let f(S) denote the regular polygon with 2n sides such that
the vertices of S are the midpoints of every other side of f(S). Let f (k)(S) denote the polygon
that results after applying f a total of k times. The area of

lim
k→∞

f (k)(P )
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where P is a pentagon of side length 1, can be expressed as a+b
√
c

d πm for some positive integers
a, b, c, d,m where d is not divisible by the square of any prime and d does not share any positive
divisors with a and b. Find a+ b+ c+ d+m.

Answer: 141

Solution: First, note that the centers of all the polygons P, f(P ), f2(P ), . . . are identical.
Denote this point by O This is because circumscribing a polygon around another in the manner
described by f does not change the center. Furthermore, the limiting polygon approaches a
circle. Therefore, it suffices to find the radius of this circle.

Let rn denote distance from O to a vertex of f (n)(P ) (where f0(P ) = P ). Then we know that
r0 =

1
2 sin(π/5) , and we also have the relation

rn = rn−1
1

cos
(

π
5·2n
) .

Therefore, we have

rn = r0

n∏
i=1

1

cos
(

π
5·2i
) .

We can condense this by multiplying by
sin( π

5·2n )
sin( π

5·2n )
and then repeatedly applying the formula

sin(2θ) = 2 sin(θ) cos(θ) to the denominator. This gives us

rn = r02
n sin

(
π

5·2n
)

sin
(
π
5

)
As n approaches infinity, we have sin

(
π

5·2n
)
≈ π

5·2n , which means rn approaches π/5

2 sin2(π/5)
=

π
10 sin2(π/5)

(we can make this more rigorous with the Taylor expansion of sin, but that’s not

necessary for now). Thus, the area of the limiting figure is a circle with area

π
π2

100 sin4(π/5)
=

6 + 2
√
5

125
π3

which gives us an answer of 141 .

14. Consider the function

f(m) =
∞∑
n=0

(n−m)2

(2n)!
.

This function can be expressed in the form f(m) = am
e + bm

4 e for sequences of integers {am}m≥1, {bm}m≥1.
Determine

lim
m→∞

2022bm
am

.

Answer: 8088

Solution: Expanding we have

f(m) =

∞∑
n=0

n2

(2n)!
− 2m

∞∑
n=0

n

(2n)!
+m2

∞∑
n=0

1

(2n)!
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=
1

2

∞∑
n=1

n

(2n− 1)!
−m

∞∑
n=1

1

(2n− 1)!
+m2

∞∑
n=0

1

(2n)!

Let’s look at that last summation first. It is the same as

m2
∞∑
k=0

1

2

[
1

k!
+

(−1)k

k!

]
=

m2

2

(
e+

1

e

)
the second summation is the same as

−m
∞∑
k=1

1

2

[
1

k!
− (−1)k

k!

]
= −m

2

(
e− 1

e

)
Finally, the last summation is the same as

1

4

∞∑
n=1

(2n− 1) + 1

(2n− 1)!
=

1

4

∞∑
n=1

[
1

(2n− 2)!
+

1

(2n− 1)!

]
=

1

4

(
1

2

(
e+

1

e

)
+

1

2

(
e− 1

e

))
=

e

4

Hence

f(m) =
e

4
− m

2
(e− e−1) +

m2

2
(e+ e−1) = e

(
m2

2
− m

2
+

1

4

)
+ e−1

(
m2 +m

2

)
and so am = m2+m

2 and bm = 2m2 − 2m+1. Clearly the limit of bm/am is 4, and so our answer

is 8088 .

15. In △ABC, let G be the centroid and let the circumcenters of △BCG,△CAG, and △ABG be
I, J, and K, respectively. The line passing through I and the midpoint of BC intersects KJ at
Y. If the radius of circle K is 5, the radius of circle J is 8, and AG = 6, what is the length of
KY ?

Answer: 2 +
√

55
2

Solution: We see that both K and J are on the perpendicular bisector of AG, so KJ is
the perpendicular bisector of AG. Let KJ intersect at AG at X. Since X is the midpoint of
AG, we have AX = 3. Also, we can find that KX =

√
(AK)2 − (AX)2 =

√
25− 9 = 4 and

JX =
√

(AJ)2 − (AX)2 =
√
64− 9 =

√
55. So, KJ = KX + JX = 4 +

√
55.

Now, we claim that Y is the midpoint of KJ. Let the midpoints of BC,CA, and AB be D,E, and
F, respectively. Also, let OB and OC be the centers of the circumcircles of △AXF and △AXE,
respectively. We want to show that ID, the perpendicular bisector of BC passes through the
midpoint of KJ.
This is equivalent to showing that the perpendicular bisector of FE passes through the midpoint
of OBOC , since this configuration is the same as that we want to prove but scaled by a factor
of 1

2 toward point A.
Let Z be the midpoint of FE. Since AD is the median, Z lies on AD and thus is on line AX.
So, Z is on the radical axis of ⊙OB and ⊙OC . Let FE intersect ⊙OB and ⊙OC . again at
points ZB and ZC , respectively. Since Z lies on the radical axis, by Power of a Point we have
(ZF )(ZZB) = (ZE)(ZZC) ⇒ ZZB = ZZC ⇒ FZB = EZC since Z is the midpoint of FE.
If we project OB and OC onto ZBZC , the images of OB and OC are the midpoints of FZB and
EZC , respectively, so the midpoint of OBOC must be project to the midpoint of ZBZC , which

is also the midpoint of FE, thus proving our claim. This means that KY = 1
2KJ = 2 +

√
55

2
.


