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Instructions: For this test, you work in teams of up to eight to solve a multi-part, proof-oriented series of problems.
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Indicate your team ID number on each of paper that you submit. Only submit one set of solutions for the team. Do
not turn in any scratch work.

In your solution for a given problem, you may cite the statements of earlier problems (but not later ones) without
additional justification, even if you haven’t solved them.
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While completing the round, you should not consult the internet or any materials outside of the content of this test
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For the submitting student only: please change your Gradescope ID to be your team ID. You may access this by
going to Account → Edit Account → Student ID.

Good luck!
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1 Introduction
In this Power Round, we will be discussing services through Queueing Theory, Market Design, and Matchings. To
give a sense of the real world application of this mathematical concept, consider a call center. Customers join this
call center line randomly, with some general average number per hour, and are served with some given frequency.
However, it is also possible that customers who have been in line for too long simply drop off on their own. Given
knowledge of how frequent each of the above events are, how long should you expect to wait until you are served if
you join the line right now? We will look at a simplified model of this, and more, in the upcoming problems.

A note on color coding: problems are all in red boxes, definitions in blue boxes, and theorems in green boxes. Discus-
sions (usually informal definitions, but important to read ones) are in orange boxes.

2



2 Probability Fundamentals
As alluded to in the introduction, we will start with looking at queues. As queueing theory is about random processes,
we begin by familiarizing with some of the concepts.

2.1 Random Variables

Definition 2.1
A random variable X on a set S can be described as a function pX(x) : R → R such that

∫∞
−∞ pX(x) dx = 1

and pX(x) ≥ 0 for all x. The function pX(x) is called the “probability density function” of X. Here we use an
integral as S may have weird structure (it might not be just integers, for example), and in this case the integral
is only nonzero on points in S. This view as an integral is more useful when S is potentially infinite (specifically,
when S = R or some large chunk of the reals).

When X is only defined on a subset of the (nonnegative) integers, we instead describe the probability density
function as satisfying

∑∞
n=0 pX(n) = 1 and pX(n) ≥ 0 for all n.

Equipped with this definition, we can already begin to look at some natural random variables. Although the below may
look like a slog of definitions, they will all be important to our later discussions (and will be a good reference).

Definition 2.2
Here are some common random variables.

• (Geometric Random Variable) We call a random variable X ∼ Geom(p) if X is the number of flips of a
coin until we get heads, given that each flip comes up heads with probability p independent of all other
throws (also known as p-biased coin).

• (Binomial Random Variable) We call a random variable X ∼ Binomial(n, p) if X is the number of heads
when a p-biased coin is thrown n times, independently.

• (Poisson Random Variable) We call a random variable X ∼ Poisson(λ) if X can be modeled as the number
of arrivals of a customer to a queue in (say, 1 hour) with fixed arrival rate λ. We say the arrival rate is
fixed if it does not depend on past frequency of arrivals in any way.

With these definitions in mind, we state and prove a theorem about some properties of these random variables.

Theorem 2.1
Let x be a nonnegative integer (in the first case, also assume that x ≥ 1).

1. If X ∼ Geom(p), then pX(x) = (1− p)x−1 · p.

2. If X ∼ Binomial(n, p), then pX(x) =
(
n
x

)
px(1− p)n−x.

3. If X ∼ Poisson(λ), then pX(x) = e−λλx

x! .

Problem 2.1 (Probability Densities, 2 points)
[1 point each] Justify the first two cases (Geometric and Binomial) of the above theorem.

Random variables are often useful in regards to what results we see when observing them: in other words, the
average values they may obtain after some transformations. To this end, we can define certain properties of random
variables.

Definition 2.3
For a general random variable X, we define

• E [X] =
∫∞
−∞ x · pX(x) dx is the expected value of X.

3



If X is only defined on nonnegative integers, we often write this as E [X] =
∞∑

n=0
n · pX(n) instead.

• Var (X) = E
[
(X −E [X])2

]
= E

[
X2
]
− E [X]

2 is the variance of X (otherwise known as the second
central moment).

• E
[
Xk
]

is the k-th moment of X.

• X̂(z) = E
[
zX
]

is the z-transform of X.

• X̃(s) = E
[
esX

]
is the moment generating function of X.

Note that really, every concept is described in terms of the expectation of a variable X. In addition, note that the
latter two definitions are the same up to transformation: substituting s = ln z gives X̃(ln z) = X̂(z). So, we will use
whichever one is more useful in the moment.
As is, though, the moment generating function X̃(s) may seem a bit mysterious: how did it get this name?

Problem 2.2 (Onion Peeling Theorem, 3 points)
Prove that the derivatives of the moment generating function are the moments of X. In particular, prove that
X̃(k)(0) = E

[
Xk
]
. The (k) superscript notation means taking the kth derivative, and then evaluating at s = 0.

We also note the following important theorem which we will not prove, and you can use freely.

Theorem 2.2
This theorem states important properties of general random variables.

1. (Linearity of Expectation) For any two random variables X,Y , we have E [X + Y ] = E [X] +E [Y ].

2. (Independent Splitting) If X and Y are independent (that is, for all x, y we have pX,Y (x, y) = pX(x)·pY (y)),
then for any functions f and g, E [f(X)g(Y )] = E [f(X)]E [g(Y )].

• As a corollary, if X and Y are independent, then Var (X + Y ) = Var (X) +Var (Y ).

• In addition, if X and Y are independent then ˜(X + Y )(s) = X̃(s) · Ỹ (s).

Problem 2.3 (Moments of Random Variables, 7 points)
Compute the following, and show your work (not showing work for a subpart will result in a score of 0 for it).

1 pts. If X ∼ Geom(p), compute E [X] in terms of p.

3 pts. If X ∼ Binomial(n, p), compute E [X], Var (X), and X̂(z) in terms of n and p.

3 pts. If X ∼ Poisson(λ), compute E [X], Var (X), and X̂(z) in terms of λ.

2.2 Inter-arrival Times
With these three distributions at our disposal, let’s dive a little deeper into the Poisson Distribution. It may seem a
bit mystical why our distribution has this form, so let’s give some reasoning for this fact.

Consider the random variables Xn ∼ Binomial(n, λ
n ), and Y ∼ Poisson(λ). We may always scale Y to be

occurring in a time interval of length n where we expect λ arrivals total to occur, or we may instead scale Xn

to take values {0, 1
n , . . . ,

n−1
n , 1}, but still look at the number of heads.

Problem 2.4 (Limit of Binomial, 1 point)
Briefly give some “intuition” for how Xn and Y are connected, as n→∞.
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Hint: Think about the arrivals of heads in Xn.
Note: this problem is one point: please do not get stuck up on it if the intuition doesn’t come immediately.

To prove this formally, we introduce one notion of two random variables being equal in distribution.

Problem 2.5 (Probabilities in z-transform, 3 points)
Suppose that X is a random variable taking values in the natural numbers. Also suppose that instead of being
given pX(k) for all k, we get X̂(z). Find an expression for pX(k) as a function of X̂(z) (and k itself).
Hint: Write out the z-transform explicitly as a sum, and start with pX(0).

The above problem implies that proving X̂(z) = Ŷ (z) implies that the two are equal in distribution.

This is very important to us, specifically because the z-transform is well understood for the Binomial and Poisson
random variable. Using this, we may formalize the intuition on their “equality”.

Problem 2.6 (Binomial converges to Poisson, 4 points)
As above, let Xn ∼ Binomial(n, λ

n ) and Y ∼ Poisson(λ).
Let X = lim

n→∞
Xn and prove that X and Y are equal in distribution (that is, prove that lim

n→∞
X̂n(z) = Ŷ (z)).

Note: the formal statement we are proving is that the Xn converge in distribution to Y as n→∞.

With this intuition out of the way, we have some notion of a Poisson random variable being a limit of Binomials with
increasingly less frequent coin flips. As the coin flips get less frequent, however, the un-normalized time between flips
increases (recall that this is approximately Geometric, as we do have a stopping point after n steps).

We may then ask the natural extension of this to Poisson random variables: what is the distribution of inter-
arrival times: that is, if people are arriving in a queue according to a Poisson random variable, then what is
the distribution of the time in between arrivals?

To explore this question, we must look into what happens if we consider an “infinite” Poisson distribution, one not
limited by how much time we capture arrivals in.

Definition 2.4
Define a Poisson Process with parameter λ as an infinite analogue of the Poisson random variable. Precisely,
the number of arrivals up through time t is distributed according to Poisson(λt).

From this definition, it makes sense that we should have Poisson(λ1) + Poisson(λ2) ∼ Poisson(λ1 + λ2), and while
this is true and not difficult to prove, you may use this whenever you need, without proof.
It turns out that the distribution of inter-arrival times will be highly important to us when looking at real queues.

Definition 2.5
Define the Exponential distribution as the continuous distribution with X ∼ Exp(λ) having probability den-
sity function pX(x) = λe−λx.

Notice that this looks somewhat like the Geometric (specifically, as λ
(
e−λ

)x ≈ p · (1 − p)x if λ = p is very small),
and as we will find out shortly, it is a continuous analogue. This has some reasoning behind it: since the Geometric
is a rough simulation of the inter-arrival times of the Binomial, we’d expect a continuous analog which looks like it
to be the distribution of inter-arrival times of the Poisson.
To prove the fact about inter-arrival times, however, note that we cannot use our distribution equality technique
between the two unfortunately: the Exponential distribution can take on any nonnegative real value unlike the
Geometric.

Problem 2.7 (Poisson interarrival is Exponential, 4 points)
Prove that the inter-arrival time X of a Poisson Process with parameter λ is distributed according to Exp(λ).
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Hint: Compute the probability that there are no arrivals from time 0 to time t.

The fact that this is an inter-arrival time for the Poisson Process also implies that the Exponential satisfies
a memoryless property similar to that of the Geometric: that is, if X ∼ Exp(λ) then P [X > t+ s|X > s] =
P [X > t].

We will not emphasize conditional probability much in this round, but this means that the probability that X > t
is the same as the probability that X > t+ s given that X > s (so, if we haven’t seen an arrival in time s, we have
no new knowledge on when the next arrival will occur). Again, this is not hard to prove, but you may use it without
proof as well.

Problem 2.8 (Playing with Exponentials, 3 points)
Let X ∼ Exp(λ) and Y ∼ Exp(µ). Show your work on the following parts.

1 pt. Compute E [X].

1 pt. Compute X̃(s).

1 pt. Compute P [X < Y ].

Finally, with all of these definitions in place, we may begin to apply them to queueing systems.

3 Queueing Theory

We begin our queueing theory adventure by looking at the most goldfish of all queues: the M/M/1/∞ queue. In
this notation, each M refers to an Exponential distribution, the 1 corresponds to the number of queues, and the
∞ refers to the cap on the length of the line. In particular, we usually look at this queue as having independent
arrivals each distributed as Exp(λ) (λ is the arrival rate), and independent service times distributed as Exp(µ)
(µ is the service rate).

Note that we do not specify how service occurs: in particular, someone who is currently being serviced could be put
on hold to help another at any point. We will begin by fixing this order as FCFS, or “First Come First Serve”. In
this order, only after the current person is serviced is the next person begun to be serviced.

3.1 Little’s Law
For a queueing system Q, it is helpful to be able to ask questions about its steady state: that is, after a long time of
running the system, what do various statistics of it look like?

We won’t rigorously define what a steady state is (as it would require an introduction to Markov Chains), but
one interpretation is that if the system is currently in the steady state, then at any point after this it remains
in steady state. In this way, we can view the steady state as the limit state of running the process for a long
time (assuming there is a unique steady state, which you may assume throughout).

Definition 3.1
We define several random variables (and their conventional symbols) for a queueing system Q.

• We define N as the number of people waiting to be serviced (including the person currently being serviced)
in the steady state distribution.

• We define T as the time you must wait until exiting the system after arriving, in the steady state.

Problem 3.1 (Memoryless queue, 7 points)
Suppose first we are in an M/M/1/∞ queue with arrival rate λ and service rate µ, with λ < µ (this is required
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so that the system does not go off to infinity in the steady state). Furthermore, suppose that people are serviced
in the order they come in. (You may not use Little’s Law, stated below, in this problem)

2 pts. Express E [N ] and E [T ] in terms of each other and µ.

5 pts. Compute E [N ] and E [T ]. It may be helpful to express things in terms of ρ = λ
µ in your proof (known as

the traffic density).

Of course, the above results are very specific to the M/M/1/∞ queue: we can’t expect the same kind of analysis
to extend to any other queue. However, the first part of the above problem is a bit intriguing: is there still a
general relationship between E [N ] and E [T ] that we may compute? It turns out that there is a surprisingly simple
relationship here.

Theorem 3.1 (Little’s Law)
Let Q be a general queueing system with a steady state and having average arrival rate λ (this need not be
memoryless in any way). Then E [N ] = λE [T ].

We will dedicate the rest of this section to proving Little’s Law. To do so, we will actually define N and T as
time-averages of N and T : specifically, they are the average number of jobs in the system and the average time
from arrival starting from the system having nobody in it. To look at an example, suppose that you are a cashier
at a supermarket. People join your line, and each person has some time Ti that it takes from them arriving to
them paying for their groceries. The average time spent in the system, if there are n total people that join your
line, is

∑
Ti

n . The time-average T is this expression if we were to extend time to infinity: that is, people keep
arriving and we take this fraction, but as time goes to infinity. Defining N proceeds similarly.

It turns out that for a system with a steady state, we have the following theorem, which you can assume freely.

Theorem 3.2 (Time average is Expectation)
In a system with a steady state, N = E [N ] and T = E [T ].

For the proof of Little’s Law, we will also need a result from calculus which you may use without proof.

Theorem 3.3 (Squeeze Theorem)
Suppose that for every x, f(x) ≤ g(x) ≤ h(x). Then, if limx→∞ f(x) = limx→∞ h(x) = L, it follows that
limx→∞ g(x) = L.

Problem 3.2 (Little’s Law, 10 points)
We split this proof up into several parts and definitions.

0 pts. (No need to submit anything) Define A(t) as the number of arrivals by time t, and C(t) the number of
people served by time t. Convince yourself that λ = limt→∞

A(t)
t = limt→∞

C(t)
t when there is a steady

state.

2 pts. Let N(t′) be the number of jobs in the system at time t′, and let Ti be the time it takes for job/person i
to be serviced (from when they arrive to when they depart). Express N and T in terms of the quantities
we have defined up to now.

8 pts. Prove the time-average version of Little’s Law: N = λT .

With Little’s Law in mind, suddenly the M/M/1/∞ solution gets a lot easier.

Problem 3.3 (Memoryless queue with Little’s Law, 1 point)
Rederive E [N ] and E [T ] for the M/M/1/∞ queue using Little’s Law and the first part of Problem 3.1.
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3.2 PASTA...yum
When proving Little’s Law, we transitioned from expectations to time averages, and claimed without proof that
these two were equal: that is, a random observer sees time averages. Is this fact true for arrivals? That is, if a person
arrives to the queue, will they necessarily see the time-average or steady state in action?
The answer turns out to be no in general, but for one very special and important case it is indeed correct.

Theorem 3.4 (Poisson Arrivals See Time Averages)
Let Q be a queueing system. Suppose that the arrivals follow a Poisson Process with rate λ (Exponential arrivals).
Let an be the probability that an arrival into the system sees n people in front of them. Then, an = πn, where
πn is the time average/steady state probability of having n people in the system.
In particular, (using terminology from the proof of Little’s Law) it is true that

lim
t→∞

P [N(t) = n] = lim
t→∞

P [N(t) = n | arrival happens right after time t]

Problem 3.4 (PASTA, 3 points)
Prove PASTA (the above theorem).

Finally, we end queueing theory by looking at a more real world type of queue.

3.3 Bounded Queues and Insensitivity
In particular, we turn our attention to a slightly restricted and more realistic version of queues: queues of bounded
size. Imagine that it is Covid times and so each store only has capacity for one person to go inside. However, there is
a no loitering policy on the sidewalk, so if all of the stores have one person in them, then everyone else who arrives
must go home. If there are k stores and both arrivals and service times are memoryless (Exponential), what is the
time-average probability that someone who arrives is turned away?

Definition 3.2
This probability is known as the blocking probability P block of the M/M/k/0 queue (note that the 0 represents
there being no waiting room). That is, P block is the probability that all storefronts are full when a new person
arrives.

Problem 3.5 (Blocking of simple queue, 6 points)
Compute (with proof) P block for the M/M/k/0 queue (with arrival rate λ and service rate µ).
Note: We suggest using ρ = λ

µ as before.

As always, having memoryless properties makes proofs easier: but can we generalize this in any way? As is, we have
PASTA which works for general service times. Is it possible that P block is also the same for general service times?
This surprising fact is indeed true, and is also known the insensitivity theorem.

Theorem 3.5 (Insensitivity of Blocking Probabilities)
Consider any M/G/k/0 queue with expected service time 1

µ (and arrival rate λ). Then, P block is invariant of
the distribution G, provided that service times are independent.

While this proof is not easy, it is essentially doable with all that we have discovered so far. For sake of exploring
more topics, we won’t prove it now.

4 Kidney Exchange
We will use some of what we have learned about probability and queues to conduct some analysis of the USA Kidney
Exchange market.
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Let’s set up the problem. We may think of the kidney exchange market at any given point in time as a set of patient-
donor pairs. There are different types of kidneys, and the chance that any particular pair of people have “compatible”
kidneys is around 21% (we will later abstract away this exact number).

Let’s say there are already some patient-donor pairs in a kidney market, and imagine a pair P,D enters the
market. Then, we can make a link between this pair and every other pair P ′, D′ where P,D′ are compatible and
P ′, D are compatible.

This is a simplified view of the kidney exchange market where the only possible donations happen as a result of
direct swaps.

As a result of patient-donor pairs entering the market, we can construct a graph where the nodes are these pairs
and the edges form exactly the possible swaps. When we match two pairs, they both exit the market: the edge
between them and all of their other edges disappear.

In addition, we have a condition known as criticality : that is, if a patient becomes critical (the node vanishes
from the system) then this is the last possible time to match them. After this point in time, the patient-donor
pair will exit the market. Note that in the scenario that a particular patient becomes critical, the best move will
be to match this person given the availability of a donor – because the best case given non-matching is that we
will match the unused donor with at most one other patient in need.

With this, we can define more formally a kidney exchange market.

Definition 4.1
We call a (m, p) kidney exchange market as one with the following properties.

• The rate of arrival of patient-donor pairs is a Poisson Process with rate m.

• When a patient-donor pair arrives, the probability of it being linked to any particular patient-donor pair
already in the market is p, independent of other pairs (in the real world, p ≈ 4%).

• Patient-donor pairs become critical as a Poisson Process with rate 1.

Usually, we write d = pm as the “average number of links”.

We generally make the assumption that if a system has equal arrival and departure rates, then it is in steady
state (and vice versa). You may assume that this is the definition of a steady state throughout.

Problem 4.1 (Expected market size, 2 point)
Suppose that we have an (m, p) kidney exchange market, and we never match any pairs. If the system is in
steady state, show that the expected number of patient-donor pairs in the market that a new pair sees when it
arrives is m.

Of course, a kidney exchange market is not useful unless people actually get matched. For the purposes of this round,
we will define a matching algorithm in terms of events: that is, pairs can only be matched when someone has just
arrived or someone has become critical.

Definition 4.2
A matching algorithm is a function f : G× {A,C} × V →M where

• G is the state of the system (the set of pairs and their links), and also who is critical.

• {A,C} denotes whether an arrival or criticality event just occurred.

• V denotes the pair that just had an arrival or criticality event.

• M is a (possibly empty) set of disjoint linked pairs who should exit the market now.

With this definition in mind, we can reason about how good a candidate function f is.
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Definition 4.3
Let C be the time average number of pairs that become critical but are not matched by f . Then, define the loss
L(f) of an algorithm as L(f) = C

m .

The reason for normalization by m is because this is the expected number of people we’ll see in the system at
any point in time, so it makes sense to consider L as a fraction of number of unmatched critical pairs over the
total number of pairs.

We begin by defining our first function f , known as the greedy algorithm.

Definition 4.4
The greedy algorithm is the function f : G× {A,C} × V →M which does the following.

• If we are in an arrival event and (P,D) is the arrival, if (P,D) has any link to a (P ′, D′) already in the
market we match them and return M = {((P,D), (P ′, D′))}. Note that (P ′, D′) is an arbitrary linked pair.

• If (P,D) has no links, output the empty matching.

• If we are in a criticality event, do nothing (we analyze why in Problem 5.2).

Theorem 4.1
Let L be the loss of the Greedy Algorithm. Then, as m→∞ and d stays fixed, L ≥ 1

2d+1 .

Problem 4.2 (Analysis of greedy in kidney market, 9 points)
We are in an (m, p) kidney market.

1 pt. Under the greedy algorithm, how many links are in the pair graph at any point in time? Using this, justify
why we do nothing at a criticality event.

1 pt. Define N to be the random variable of the number of pairs in the market at steady state (that is, suppose
the system is already in steady state. We let the kidney exchange market run for some amount of time,
and then look at the system). Compute L, the loss of the greedy algorithm.

1 pt. Suppose that the current market size is exactly z. Compute the probability that a new arriving pair finds
a match.

5 pts. Show that if z is the market size which achieves the steady state conditions mentioned under Definition 4.1,
then z ≥ m

2d+1 .

1 pt. Combine the parts 2 and 4 to prove the lower bound for L and hence Theorem 4.1.

One of the major issues with the greedy algorithm is that we never wait to see what other connections (P,D)
could obtain. So, a natural question is: what is the value of waiting? That is, if we wait for someone to become
critical before matching them, can we do a lot better?

It turns out the answer is yes: we can do exponentially better. To this end, we define the patient algorithm.

Definition 4.5
The patient algorithm is the function f : G× {A,C} × V →M which does the following.

• If we are in an arrival event, do nothing.

• If (P,D) had a criticality event and has some link (P ′, D′), match them and return M = {((P,D), (P ′, D′))}.
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• If (P,D) has no links, do nothing.

Theorem 4.2
The loss L of the Patient algorithm, as m→∞ and d stays fixed, satisfies L ≤ e−d/2

2 .

To prove this, we will focus on the distribution of the number of patient donor pairs in the market. Toward this, we
need a helpful lemma on concentrated random variables.

Definition 4.6
For c1, c2,m > 0, define a discrete random variable X as (c1, c2,m) well-concentrated if

P
[
|X −E [X] | > k

√
m
]
≤ c1
√
me−c2k

2

.

You may use the fact that 1 + x ≤ ex for any x without proof.

Problem 4.3 (Bounds with well-concentrated, 18 points)
Suppose that X is (c1, c2,m) well-concentrated and always satisfies X ≥ 0. In addition, suppose that X takes
on only nonnegative integer values. In this problem, we will give an upper bound on E

[
X(1− d

m )X
]

for fixed
d and m→∞.

4 pts. Prove that for any nonnegative random variable Y , E [Y ] ≤ k +
∫∞
k

P [Y > y] dy.

6 pts. Suppose that f(x) taking in real numbers is an increasing function and g(x) a decreasing function. Suppose
that X is in addition a random variable taking on each value in {1, 2, . . . , n} with probability 1

n . Prove
that

E [f(X)g(X)] ≤ E [f(X)]E [g(X)] .

The same fact is true for any nonnegative random variable X, which you can use without proof after this
part.

8 pts. Let ε > 0 and d > 1. Prove that

E

[
X

(
1− d

m

)X
]
≤ E [X] e−

dE[X]
m (1 + ε).

for all large enough m.

To conclude, we have proven that E
[
X
(
1− d

m

)X] ≤ E [X] e−
d
mE[X] when m→∞, for fixed d.

We now see how to use this result to analyze the patient algorithm.

Problem 4.4 (Analysis of patient in kidney market, 8 points)
We are in an (m, p) kidney exchange market.

1 pt. Suppose that there are currently z pairs in the market. If a pair becomes critical, what is the probability
that they have a match?

2 pts. As before, let N be the random variable of the number of pairs in the market at steady state. Compute
L, the loss of the patient algorithm, as a function of N .

3 pts. Show that E [N ] ≥ m
2 . (Hint: use the alternative description of a steady state).

11



2 pts. Suppose that N is (c1, c2,m) well-concentrated (this is true, but we will not prove it here). Prove Theo-
rem 4.2.

What are the takeaways from the kidney exchange market? Probably the most important takeaway is the
importance of waiting: if d is large then waiting leads to a much lower number of people not being matched. So,
even though in this queuing system we have the Little’s Law relation N = mT , when we split our output into
types (here these are matched and unmatched), it ends up being worth it sacrificing T of one to decrease the
probability of the other.

In addition, this problem gives us a foray into matching theory. This problem is an example of a dynamic online
matching. That is, the set of nodes and edges is constantly changing. Such change makes it difficult to construct an
optimal algorithm (there do exist algorithms better than the patient algorithm, at least heuristically). In the next
section, we will look at simpler scenarios of matchings.

5 Fixed Matchings
To look at matchings properly, let us begin with some graph theory.

5.1 Graph Theory and Matchings definitions

Definition 5.1 • A graph is denoted as G = (V,E) where V is some collection of vertices and E is a
collection of pairs of distinct vertices. We will often work with undirected graphs: that is, E is a collection
of unordered pairs of vertices. Commonly, we write n = |V | and m = |E|.

• A bipartite graph G is commonly written as G = (X,Y,E) where X ∪ Y = V , they are disjoint, and all
edges have one endpoint in X and one in Y .

• The degree of a vertex deg(v) is the number of edges e ∈ E with v ∈ e.

• The neighborhood of a vertex v (written N(v)) is the set of all u such that {u, v} ∈ E.

• A list of vertices v1, v2, . . . , vk is called a walk if {vi, vi+1} ∈ E for all i. A walk is called a path if
additionally all of the vi are distinct. A walk is called a cycle if v1 = vk and all other nodes are distinct
from them.

In the kidney exchange market, V is the set of patient-donor pairs and E is the set of links.

For practice, here is one of the most useful results in graph theory.

Problem 5.1 (Handshake Lemma, 2 points)
Let G = (V,E) be an undirected graph. Prove that

∑
v∈V deg(v) = 2|E|. This is called the Handshake Lemma.

Now we define some important definitions of matchings.

Definition 5.2
Let G = (V,E) be an undirected graph. For a subset S ⊆ E, let V (S) be the set of endpoints of these edges.

• A subset M ⊆ E is called a matching if |V (M)| = 2|M |: that is, all the edges are “disjoint” and have no
overlapping endpoints.

• A matching M is called maximal if there are no edges e ∈ E \M with M ∪ {e} still being a matching.

• A matching M is called maximum if |M | is largest possible among all matchings on G. A graph can have
multiple maximum matchings. If |V (M)| = |V | as well, we call M a perfect matching.

12



Problem 5.2 (Practice with matchings, 3 points)
For each of these 3 graphs, say whether the highlighted edges form a maximal matching and whether they form
a maximum matching. If they do not form a maximum matching, find a maximum matching. No justification
required.

1

2

3

4

5

6 1

2

3 4

5

1 2

3

45

6

7

5.2 Algorithms for Static Matchings
Matchings are nice in graphs precisely because of their application to real world problems: much like kidney exchange,
an (embarassingly) large number of economics-related problems can be written through matchings. Some other
examples are medical residency matching and school system matching. So, a natural question to ask is: can we find
matchings efficiently?

We will measure efficiencies of algorithms in terms of m (the number of edges) and n (the number of vertices).
In particular, we will say that any time we “ask” for a vertex or edge, this takes time 1. So, an algorithm looking
at every vertex in a graph takes time n and an algorithm looking every edge in a graph takes time m.
So, we can look at algorithms as having runtime as a function of m and n. The algorithms we will be working
with here will have polynomial running time in both: that is, there is a multivariate polynomial p(m,n) giving
an upper bound on the runtime of our algorithm for large enough m,n.

There are some basic operations that we will take as constant for the remainder of this round, for simplicity. We list
them here.

Theorem 5.1
The following take time 1.

• Given a list of vertices, check if a vertex is present in the list.

• Given a list of edges, check if an edge is present in the list.

• Given a list of edges, check if a vertex is an endpoint of some edge in the list.

• Add a vertex (resp. edge) to a list of vertices (resp. edges)

Problem 5.3 (Finding a maximal matching, 3 points)
Let G = (V,E) be a graph. Propose an algorithm which computes a maximal matching in time at most c ·m,
and prove this running time bound. In addition, find the c of your algorithm.
Hint: think about the definition of a maximal matching.

Unfortunately, finding a maximum matching is a little bit harder, and we need a few more definitions.

Definition 5.3
Let G be a graph and M be a matching.

• An alternating path with respect to M is a path v1, v2, . . . , vk such that every other consecutive pair
{vi, vi+1} ∈M (note: we make no suppositions of whether the first pair is in M).
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• An augmenting path with respect to M is an alternating path v1, v2, . . . , vk such that both v1, vk are not
in V (M).

With this definition in mind, we can present a more useful way to look at maximum matchings.

Problem 5.4 (Berge’s Lemma (Max Matching), 5 points)
Let G be a graph. Prove that M is a maximum matching if and only if there is no augmenting path with respect
to M .

It turns out that on bipartite graphs, this “immediately” gives an algorithm for computing maximum matchings.
Although this observation also gives an algorithm for general graphs, this is outside the scope of this power round.

Problem 5.5 (Efficiently finding max matching, 15 points)
Let G = (X,Y,E) be a bipartite graph.

8 pts. Suppose that M is a matching in G. Propose an algorithm which either finds an augmenting path with
respect to M or returns that none exist, and prove that your algorithm satisfies this guarantee. Your
algorithm must run in time at most c(n+m) for some suitable constant c.

Hint: What does an augmenting path in a bipartite graph look like?

4 pts. Prove the runtime of your algorithm satisfies the above.

3 pts. Propose an algorithm for computing a maximum matching in G, and give an upper bound on its runtime
(don’t worry about optimizing constants).

You may have noticed that finding a maximum matching is far more work than finding a maximal matching (at
least, considering the number of points each problem is worth). Is there a good reason for this? More specifically, is
there a large gap between the sizes of maximal and maximum matchings ala the greedy and patient algorithm for
kidney exchange?

Problem 5.6 (Maximal matchings aren’t so bad, 3 points)
Let M be a maximal matching in a graph G, and M ′ a maximum matching. Prove that |M | ≥ 1

2 |M
′|.

6 Dynamic Matchings
The static matching setting, while applicable in the real world, is sometimes not the one we really care about: at
times, we may have people or things arriving dynamically and we want to match them when they arrive.

In particular, let G = ({}, Y, {}) be a bipartite graph (that is, there are no vertices in X yet and also no edges as
a result). Vertices of X begin arriving, along with their edges to Y . When a vertex x ∈ X and its edges arrive,
an algorithm can match it to some y ∈ Y or not. If not, then x can never be matched again in the future.

To formalize, we have the following definition.

Definition 6.1
An online matching algorithm is a function f : G×X × P(Y )→ Y ∪ {⊥} where

• G is the currently uncovered graph: it contains the current information about which pairs (x, y) are
matched.

• X denotes the new vertex that has just arrived.

• P(Y ) denotes the powerset of Y : this encodes the neighbors of x.

• The return value says that either we match (x, y) or we do not match x.

14



We define ALGf (G,L) as the number of matched edges when we run f on a graph G with arrival order L. We
drop the subscript f when it is clear from context.

We can then compute the quality of an algorithm by comparing it to the maximum matching, which would be the
optimal “omniscient” (knows everything that will happen) algorithm.

Definition 6.2
We define what it means for an algorithm to perform well in the online setting.

• The performance of a matching algorithm f on an input graph G and arrival order L is defined as ALG(G,L)
|M |

where M is a maximum matching of G.

• The competitive ratio c of an algorithm is defined as the minimum performance over any possible input.
That is, c = minG,L

ALG(G,L)
|M(G)| .

How good of a competitive ratio can we expect to get if we can only consider deterministic algorithms?

Problem 6.1 (Deterministic Online Matchings, 6 points)
We will show in this problem that determinism can only go so far.

4 pts. Propose an algorithm which achieves a competitive ratio of 1
2 .

2 pts. Prove that this is tight: there can be no algorithm which achieves better than c = 1
2 .

Hint: You should only need 2 vertices in X.

What if we allow randomness in a solution? In particular, suppose that we are allowed to make each matching decision
with some probability: can we improve our performance? It turns out the answer is yes: in fact, we can achieve an
expected competitive ratio of 1− 1

e .

Definition 6.3
A randomized algorithm ALG for online matching is a decision process where whenever x ∈ X arrives, ALG
chooses each match x → y (or x unmatched) with some probability depending on what the graph currently
looks like and the information it knows about x. Crucially, it cannot assume anything about future arriving x.
In the matching function f framework, we have that f : G×X×P(Y )→ Y ∪{⊥} actually is a random variable,
which selects y ∈ Y or no match, each with some probability.

Now, under this definition of randomized algorithms, we can define a similar notion of competitive ratio.

Definition 6.4
Let G = (X,Y,E) be a bipartite graph and L an ordering on adding the vertices of X to ({}, Y, {}). As before,
let ALG(G,L) be a random variable denoting the size of the matching returned by the algorithm ALG on this
input.
Then, the expected competitive ratio is defined as c = minG,L

E[ALG(G,L)]
|M(G)| .

To bound this in expectation, we will need a notion of fractional matchings (the regular matchings we had before
are sometimes called integral matchings) which we will show to be equivalent to randomized matchings.

Definition 6.5
A fractional matching on a graph G = (X,Y,E) is a collection of variables mx,y for (x, y) ∈ E. satisfying∑

y∈N(x) mxy ≤ 1 when x ∈ X and
∑

x∈N(y) mxy ≤ 1 when y ∈ Y .

Intuitively, this is saying that instead of matching x to a specific vertex y ∈ Y , we split this matching into possibilities
for each neighbor of x. We will make this intuition precise in the following problem.
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Problem 6.2 (Randomized = Fractional, 6 points)
Let ALG be a randomized algorithm for the online matching problem. Then, prove that there exists a determin-
istic FracALG which (given the same graph G and order L) satisfies

E [ALG(G,L)] =
∑

(x,y)∈E

mxy

at the end of the process.
Briefly describe why we can also go from any deterministic fractional algorithm FracALG to a randomized ALG.

Hence, if we prove that the competitive ratio of fractional algorithms is at least some c, this implies that the
competitive ratio of randomized integral algorithms is also at least c. To this end, we prove the following theorem in
the next set of problems.

Theorem 6.1
The competitive ratio of any randomized integral algorithm is at most 1− 1

e , and this bound is tight.

To prove this theorem, we introduce a fundamental fractional algorithm known as the water level algorithm.
Toward this algorithm, we will need a bit more notation about fractional matchings.

Definition 6.6
For any fractional matching M = {mxy} on the graph G = (X,Y,E), define Wx =

∑
y∈N(x) mxy and Wy =∑

x∈N(y) mxy. We call these the “load” of a vertex (how important it is, in some sense).

The intuitive description behind the water level algorithm (before presenting it) is as follows: suppose there
is a set of containers of water, each corresponding to a vertex y ∈ Y . When a new vertex x ∈ X arrives, it
brings with it 1 gallon of water. Then, it can distribute this gallon amongst the edges (x, y) by increasing mxy.
However, it does this addition to try to “even out” the sets Wy as much as possible. In particular, if x neighbors
every vertex y ∈ Y , and the water weights Wy are all equal, then x will set mxy to be the same for all y.

Here is the actual algorithm.

Water Level Algorithm (Step)

Input: A graph G = (X ′, Y, E) with fractional matching M = {mxy}, and a vertex x ∈ X \X ′ with its neigh-
borhood N(x) ⊆ Y .

Output: A fractional matching M ′ = {mxy} on G = (X ′ ∪ {x}, Y, E ∪N(x)).

• Set the “budget” w = 1.

• Order the neighbors yi ∈ N(x): Wy1
< Wy2

< Wy3
< . . . < Wyk

. Assume that there are no ties (see the
discussion after this algorithm for how to deal with ties).

• While w > 0 and Wy1
< 1:

– Set mx,y1 ← mx,y1 + (Wy2 −Wy1). If Wy2 −Wy1 > w, then set mx,y1 ← mx,y1 + w.

– Set w ← w − (Wy2
−Wy1

).

– Reorder the neighbors N(x) according to their new loads W .

• Output {mxy}

Note that we swept under the rug issues of equal loads, even though this is exactly what happens after one iteration
of the while loop.
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To combat this case, we will increase both Wy1 and Wy2 : in particular, we will try to set both

mx,y1
← mx,y1

+ (Wy3
−Wy2

)

mx,y2
← mx,y2

+ (Wy3
−Wy2

).

If 2(Wy3
−Wy2

) > w (our budget), then we we set mx,y1
← mx,y1

+ w
2 and similarly for mx,y2

← mx,y2
+ w

2 .

What this does is effectively say that if Wy1
= Wy2

when the budget w > 0, then we will keep this invariant true
forever. If Wy2

= Wy3
as well, we extend the same discussion as above to instead add w

3 , and so on. In this way,
the water level algorithm always leaves the sets {Wy : y ∈ N(x)} with at least as much equality as they had before
starting (in fact, strictly more equality).

6.1 Analysis of Water Level Algorithm

To analyze the water level algorithm, we use a technique known as money analysis. We let ax be the money of
x ∈ X at any point, and by be the money of y ∈ Y . Note that money can be fractional or irrational: all that
matters is that it is nonnegative. When x ∈ X arrives, it comes with $1 which it is allowed to allocate to ax, by
for y ∈ N(x). So, whenever we increase mxy in the Water Level Algorithm step, we will change ax, by in such
a way that

∑
(x,y)∈E mxy =

∑
x ax +

∑
y by. That is, the total amount of allocated money is equal to the total

load allocation (just not necessarily in the same proportions).

The natural question to ask now is: “why is this useful?”.

Problem 6.3 (Money is competitive, 3 points)
Let M = {mxy} be the Water Level fractional matching of a graph G = (X,Y,E), and let ax, by be the moneys
associated to x ∈ X and y ∈ Y respectively.
Prove that if for all (x, y) ∈ E we have ax + by ≥ c, then FracALG is c-competitive.
Hint: Let M∗ = {m∗

xy} be the optimal matching, and find a way to compare them.

One analogy is to the deterministic integral case: there, we can guarantee that at least one endpoint of every edge
in a matching is contained in a maximal matching. Hence, splitting money 50/50 for matches gives the desired 1

2
approximation (we are intentionally leaving out details: this is not the intended approach for deterministic matchings).

Although it may seem a bit magical at first glance, we will let g : [0, 1] → [0, 1] be a differentiable increasing
function and set by =

∫W (y)

0
g(s) ds. The intuition here is saying that small changes to mxy correspond to

changes g(Wy) in the money of y (correspondingly, small changes to mxy yield changes 1− g(Wy) for the money
of x).

g being increasing essentially tells us that as y fills up, we should allocate more money to it: if later an x′ with
y ∈ N(x′) arrives, y should serve as “protection” so that ax + by ≥ c is satisfied. Then, integrating over small
changes to mxy gives the integral representation written here.

The final step here is choosing a function g which maximizes ax + by.

Problem 6.4 (Analysis of Water Level, 9 points)
Fix an edge (x, y) ∈ E, and let W f

y be the final load of y. Furthermore, let G be an antiderivative of g.

2 pts. Prove that ax + by ≥ G(1)−G(0).

4 pts. Prove that ax + by ≥ G(W f
y )−G(0) + 1− g(W f

y ).

3 pts. By some trickery, we can reduce our search to determining a function g(z) satisfying G(1)−G(0) = c and
G(z)−G(0) + 1− g(z) = c for all z ∈ [0, 1]. Find such a g, and on the way compute c.

Hint: When faced with an antiderivative...
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We have now shown that there is an algorithm achieving the competitive ratio bound 1 − 1
e . To finish the proof of

the theorem, we show that there cannot exist a better bound.

Problem 6.5 (Optimality of Water Level, 14 points)
Consider the graph G = (X,Y,E) where |X| = |Y | = n (so we can label of each of these by {1, 2, . . . , n}) and
the edges are E = {(x, y) : y ≥ x}.

1 pt. Show that the size of the maximum matching in G is n.

4 pts. Consider the arrival order L = [1, 2, . . . , n]. Prove that as n→∞, the competitive ratio of Water Level on
this input is 1− 1

e .

Note: You may use without proof that Hn → lnn+ d as n→∞ for some constant d.

6 pts. Suppose ALG is a randomized integral algorithm for online bipartite matching.

We choose a random ordering L of {1, 2, . . . , n}. Prove that

c =
1

n
E [ALG(G,L)] ≤ 1

n

n∑
j=1

min

(
1,

j∑
i=1

1

n− i+ 1

)
,

that is, the expected size of the matching formed (with expectation over the ordering L and the randomness
of ALG) is bounded above.

Hint: Prove this for deterministic integral algorithms first.

3 pts. Suppose that the right hand side of the above expression approaches 1− 1
e as n→∞ (it does). Show that

for any ε > 0, there is some n and ordering Ln so that E [ALG(G,Ln)] ≤ 1− 1
e + ε as n→∞.

The previous problems prove that Water Level always has c ≥ 1 − 1
e for any input, and that there is an input

achieving 1− 1
e in the limit. Therefore, c = 1− 1

e for the Water Level algorithm. Furthermore, for any randomized
integral algorithm (and hence any deterministic fractional algorithm) there is some input achieving c ≤ 1 − 1

e
in the limit which essentially shows that the Water Level algorithm is “optimal” in some sense: on a worst case
input, it achieves a better competitive ratio than any other algorithm.

7 Stable Matchings
In the final section of this power round, we will see an application of matchings with explicit real world applicability.

Let H be a set of high school students and S a set of colleges. In this unrealistic world, we have |H| = |S| = n:
that is, there are the same number of high schoolers and colleges. We wish to construct a matching in the graph
G(H,S, {(h, s) : h ∈ H, s ∈ S}): that is, the graph has every possible edge.

Finding a matching here is easy: we can just greedily match students to schools. The problem is made more difficult
with the addition of preference lists.

Definition 7.1
A stable matching problem is a graph G = (H,S) with each h ∈ H and s ∈ S having a preference list: for each
h ∈ H this is an ordering Lh = [s1, s2, . . . , sn] and for s ∈ S this is Ls = [h1, h2, . . . , hn]. Note that we drop the
set of edges, since we will always assume that every edge exists.

Preference lists (from the student view) encode where a student would like to go. For example, a student h may
have the preference list [Stanford, CMU, . . . ] indicating that their top choice is Stanford, the next CMU, and so
on. So, we would say that Stanford ≻ CMU in Lh (read this as “Stanford is strictly higher preference than CMU
on the preference list of h”). Importantly, each preference list ranks every school (respectively, every student).

We may now look at the property of stability in matchings.
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Definition 7.2
Let M be a matching of G = (H,S). We say a pair (h1, s2) is an unstable pair if s2 ≻ s1 in Lh1

and h1 ≻ h2

in Lh2
, where (h1, s1), (h2, s2) ∈M . That is, (h1, s2) prefer each other to their current matches.

A matching M is called stable if it has no unstable pairs.

The question now arises: does every stable matching problem have a stable matching? The answer, surprisingly, is
yes.

Theorem 7.1
Let (G = (H,S), L = {Lh : h ∈ H} ∪ {Ls : s ∈ S}) be a stable matching problem. Then, there exists a stable
matching M .

We will prove this theorem constructively: that is, we will give an algorithm which finds a stable matching of G. The
algorithm itself is called the “proposal algorithm” (the stable matching problem was originally written with marriage
as an example).

Proposal Algorithm

Input: A stable matching problem (G = (H,S), L = {Lh : h ∈ H} ∪ {Ls : s ∈ S}).

Output: A stable matching M .

• For each h ∈ H, keep track of the highest preference person in Lh that they have not yet proposed to.

• Let M be the empty matching.

• While there exists an unmatched h ∈ H:

– h proposes to s, the top unproposed-to person in Lh.

– If s is unmatched, add (h, s) to M .

– If (h′, s) are matched and h ≻ h′ in Ls, remove (h′, s) from M and add (h, s).

– Else, continue the while loop.

• Return M .

We will now analyze this “simple” algorithm.

Problem 7.1 (Properties of proposal algorithm, 4 points)
We show some base properties of the algorithm: that it terminates and returns a valid matching.

2 pts. Suppose that |H| = |S| = n. Prove that the proposal algorithm terminates and give an upper bound on
the number of iterations of the loop.

2 pts. Prove that the returned matching M is full: that is, |M | = n.

Next, we prove that this algorithm indeed returns a stable matching.

Problem 7.2 (Stability of proposal algorithm, 4 points)
Prove that the proposal algorithm finds a stable matching.

Hence, we have proven the stable matching theorem. However, there is more to explore here as well.

7.1 Applications of Stable Matchings
The structure of proposing might suggest that there is more hidden structure that we are missing in the proposal
algorithm: in fact, we can say more about this matching.
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Definition 7.3
For a student h, let best(h) be the highest s ∈ Lh that h could be matched to in any stable matching. Similarly,
let worst(s) be the lowest h ∈ Ls that s could be matched to in any stable matching.
We say a matching M is student-optimal if M = {(h,best(h)) : h ∈ H} and we call it school-pessimal if
M = {(worst(s), s) : s ∈ S}.

It may make sense that the proposal algorithm is worse for schools than for students: if s is unmatched, then
it has to accept any matching request is receives. The surprising fact is that it is both school-pessimal and
student-optimal in addition to this.

Problem 7.3 (Optimality of proposal algorithm, 8 points)
Prove that the matching M returned by the proposal algorithm is both student-optimal and school-pessimal.

A natural extension of best and worst is the idea of soulmates.

Definition 7.4
A pair (h, s) are called soulmates if they are matched in every stable matching M .

Historically, the name “soulmates” comes from the original marriage version of stable matching.

Problem 7.4 (Soulmates, 3 points)
Give an algorithm which, given a stable matching problem (G,L), determines if there is a pair of soulmates
(and if so, returns such a pair).

We end the power round by extending the proposal algorithm slightly to be more realistic in terms of students and
schools.

Problem 7.5 (Realistic schools, 5 points)
Suppose that we have a set of m · n students H for integer m ≥ 1, and a set of n schools S. Each school has m
spots in it to accept students into. Each student has a preference list of schools Lh and each school a preference
list of students Ls, as before.
An unstable pair in this setting is an unmatched pair (h, s) where h ≻ h′ in Ls for some matched (h′, s) and
s ≻ s′ in Lh (where (h, s′) are matched). Prove that there exists a stable matching in this setting: that is, there
are still no unstable pairs.
Hint: How can you simulate m · n schools?
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