Time limit: 50 minutes.

Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.

No calculators.

- 1. Points A, B, C, and D lie on a circle. Let AC and BD intersect at point E inside the circle. If $[ABE] \cdot [CDE] = 36$, what is the value of $[ADE] \cdot [BCE]$? (Given a triangle $\triangle ABC$, [ABC] denotes its area.)
- 2. Let ABC be an acute, scalene triangle. Let H be the orthocenter. Let the circle going through B, H, and C intersect CA again at D. Given that $\angle ABH = 20^{\circ}$, find, in degrees, $\angle BDC$.
- 3. $\triangle ABC$ has side lengths 13, 14, and 15. Let the feet of the altitudes from A, B, and C be D, E, and F, respectively. The circumcircle of $\triangle DEF$ intersects AD, BE, and CF at I, J, and K respectively. What is the area of $\triangle IJK$?
- 4. Let ABC be a triangle with $\angle A = \frac{135}{2}^{\circ}$ and $\overline{BC} = 15$. Square WXYZ is drawn inside ABC such that W is on AB, X is on AC, Z is on BC, and triangle ZBW is similar to triangle ABC, but WZ is not parallel to AC. Over all possible triangles ABC, find the maximum area of WXYZ.
- 5. In quadrilateral ABCD, AB = 20, BC = 15, CD = 7, DA = 24, and AC = 25. Let the midpoint of AC be M, and let AC and BD intersect at N. Find the length of MN.
- 6. Let the incircle of $\triangle ABC$ be tangent to AB, BC, AC at points M, N, P, respectively. If $\measuredangle BAC = 30^{\circ}$, find $\frac{[BPC]}{[ABC]} \cdot \frac{[BMC]}{[ABC]}$, where [ABC] denotes the area of $\triangle ABC$.
- 7. $\triangle ABC$ has side lengths AB = 20, BC = 15, and CA = 7. Let the altitudes of $\triangle ABC$ be AD, BE, and CF. What is the distance between the orthocenter (intersection of the altitudes) of $\triangle ABC$ and the incenter of $\triangle DEF$?
- 8. Let Γ and Ω be circles that are internally tangent at a point P such that Γ is contained entirely in Ω . Let A, B be points on Ω such that the lines PB and PA intersect the circle Γ at Y and X respectively, where $X, Y \neq P$. Let O_1 be the circle with diameter AB and O_2 be the circle with diameter XY. Let F be the foot of Y on XP. Let T and M be points on O_1 and O_2 respectively such that TM is a common tangent to O_1 and O_2 . Let H be the orthocenter of $\triangle ABP$. Given that PF = 12, FX = 15, TM = 18, PB = 50, find the length of AH.
- 9. The bisector of $\angle BAC$ in $\triangle ABC$ intersects BC in point L. The external bisector of $\angle ACB$ intersects \overrightarrow{BA} in point K. If the length of AK is equal to the perimeter of $\triangle ACL$, LB = 1, and $\angle ABC = 36^{\circ}$, find the length of AC.
- 10. Let ABCDEFGH be a regular octagon with side length $\sqrt{60}$. Let \mathcal{K} denote the locus of all points K such that the circumcircles (possibly degenerate) of triangles HAK and DCK are tangent. Find the area of the region that \mathcal{K} encloses.