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Common notation

We will use set notation throughout power round. Here is a guide to set notation. The format used
is:

(math symbol): (meaning in words)

Sets

• ∅: empty set

• a ∈ A: a is an element of A

• |A|: the size of A
Example. If A = {1, 2, 3}, then |A| = 3.

• A ⊆ B: A is a subset of B (i.e. all elements of A are elements of B)
Example. {1, 2} ⊆ {1, 2}, ∅ ⊆ {1, 2} but {1, 2} 6⊆ {1, 3}.

• A ⊂ B: A is a proper subset of B (i.e. A ⊆ B and A 6= B)
Example. {1, 2} ⊂ {1, 2, 3}, but {1, 2} 6⊂ {1, 2}.

• A ∩B: the intersection of sets A and B
Example. {1, 2} ∩ {2, 3} = {2}.

• A ∪B: the union of sets A and B
Example. {1, 2} ∪ {2, 3} = {1, 2, 3}.

• A \B : the set of elements in A but not in B
Example. {1, 2} \ {2, 3} = {1}

• N: the set of natural numbers (i.e. {1, 2, 3, ...})

• Z: the set of integers

• Z≥0: the set of non-negative integers

• Q: the set of rational numbers

• R: the set of real numbers

• Zm: the set of integers mod m (further explained in Section 2)

Functions

• f : X → Y : f is a function taking values from set X and outputting values from set Y .

• f : X → Y is an injection if f(x1) 6= f(x2) whenever x1 6= x2.

• f : X → Y is a surjection if for every y ∈ Y , there exists x ∈ X such that f(x) = y.
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1 Part I: Polynomial Sequences

1.1 Introduction

Given a polynomial Q(x) with integer coefficients, let’s consider the sequence

{qi}i≥0 = {0, Q(0), Q(Q(0)), ...}

Unless Q happens to be exceptionally simple, there will be no exact closed-form formula for the
n-th term in the sequence. Indeed, such sequences sometimes exhibit chaotic and varied behaviors.
For instance, it could grow swiftly towards infinity (e.g. Q(x) = x + 1), or even exhibit periodic
behaviour (e.g. Q(x) = (1− x)2).

A strange question to ask might be if your favorite number appears as the trailing (decimal) digits
of some term in the sequence. This sounds like a hopeless question to answer (especially if your

favorite number is beπ
√
163c), but here is a miraculous fact:

Fact. If every positive integer from one to a billion appears as the trailing digits of some term of
the sequence, then so must every positive integer (regardless of how big it is).

We will prove the most general version of this fact, phrased as the following theorem:

Theorem. Given any natural number n and a polynomial with integer coefficients Q, suppose the
sequence

{qi}i≥0 = {0, Q(0), Q(Q(0)), ...}

has the property that the sequence covers all residue classes mod n8 (i.e. for any r ∈ N, there exists
an index i where qi ≡ r (mod n8))1. Then, the sequence covers all residue classes mod nk for any
positive integer k (.e. for any r ∈ N, there is some i such that qi ≡ r (mod nk)).

Linear functions

To understand this problem better, we will spend some time trying to understand the problem for
linear functions Q(x) = Ax+B.

We’ll start off with the familiar setting of base n = 10.

1. [1] Find a choice of linear function Q(x) = Ax+B for which the sequence covers all residue
classes mod 10k for any positive integer k.

Note: you are not allowed to use the statement of the theorem above or later problems to
answer this problem.

Solution to Problem 1: Q(x) = x+1 works, since the sequence lists all natural numbers.

2. (a) [2] Give a general closed-form formula for qn if Q(x) = Ax+B (where A,B ∈ N).

(b) [1] Show that for integers j > i ≥ 0, qj − qi = Aiqj−i.

Solution to Problem 2:

18 can in fact be replaced by a smaller number, but is chosen on purpose so as to reduce the amount of technical
details required.
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(a) If A = 1, then clearly qn = Bn. Otherwise, qn = (An−1)B
A−1 . This can be shown by

induction: clearly this holds for n = 1. Then

A(An − 1)B

A− 1
+B =

An+1B −AB +AB −B
A− 1

=
(An+1 − 1)B

A− 1

Hence by induction, we have the closed formula above.

(b) We plug in the formula from (a):

qj − qi =
B

A− 1

(
Aj −Ai

)
=

BAi

A− 1

(
Aj−i − 1

)
= Aiqj−1

3. (a) [4] Show that unless A ≡ 1 (mod 10), the sequence {qi} does not cover all residue classes
mod 10.

(b) [2] Show that for A = 11, the sequence {qi} does not cover all residue classes mod 100.

Hint: powers of 11 mod 100 goes 1, 11, 21, 31, ...

Solution to Problem 3:

(a) This can be essentially done by a case bash, but the following points can shorten it:

• We can reduce to the case B = 1. The sequence is then qn = 1 +A+ ...+An−1

• Clearly if A and 10 have a common factor d > 1, then qn ≡ 1 (mod d) and we
cannot cover all residues.

• For the remaining cases, note firstly that qj − qi = Aiqi−j (for j > i).

If A 6≡ 1 (mod 10), we have 20 | A4 − 1 but (10, A − 1) = 2, so 10 | (A4−1)/2
(A−1)/2 = q4,

hence the residue mod 10 has period 4 and cannnot possibly cover all residues.

(b) Check inductively that 11k ≡ 10k+1 (mod 100) so qk = 1+...+Ak−1 ≡ 10+ 10(10−1)
2 ≡ 1

(mod 20).

This tells us that the first interesting case happens when A = 21.

4. Suppose that Q(x) = 21x+ 1.

(a) [4] Complete the following table for q10a+b (mod 102):

a

1 2 3 4 5 6 7 8 9 10

b

1 01 11 21 31 41 51 61 71
2 22 32 42 52 62 72 82 92
3 63 73 83 93 03 13 23 33
4 24 34 44 54 64 74 84 94
5 05 15 25 35 45 55 65 75
6 06 16 26 36 46 56 66 76
7 27 37 47 57 67 77 87 97
8 68 78 88 98 08 18 28 38
9 29 39 49 59 69 79 89 99
10 10 20 30 40 50 60 70 80

(b) [1] Show that {qi} covers all residue classes mod 10.
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(c) [3] Find a polynomial f such that qn ≡ 10f(n)+n (mod 100), and justify why it works.

(d) [2] Show that {qi} covers all residue classes mod 102.

(e) [4] Show that {qi} covers all residue classes mod 10k for all positive integers k.

Hint: Consider q10k/q10k−1.

Solution to Problem 4:

(a) When you move right you +10.

(b) Because Q(x) ≡ x+ 1 (mod 10).

(c) If you stare really hard you will realize f(n) = n(n− 1) fits. The reason comes from the
expansion of (1 + 20)n:

(1 + 20)n = 1 +

(
n

1

)
20 +

(
n

2

)
202 + 203(...)

so 21n−1
20 ≡ n+

(
n
2

)
· 20 (mod 100).

Comments. You can also show this inductively, or make use of the fact that qn− qn−1 ≡
An ≡ n(A− 1) + 1.

(d) From the above, we have that qn+10 − qn ≡ 10 (mod 100) (since 10 | f(n+ 10)− f(n).

(e) k = 1, 2 are implied by the previous parts.

It is sufficient to show that for k ≥ 3 qn+10k − qn ≡ 10k (mod 10k+1). We will prove this
inductively.

Indeed, qn+10k − qn = Anq10k , so because A ≡ 1 (mod 10) the above statement is
equivalent to q10k ≡ 10k (mod 10k+1).

To complete the induction, it is sufficient to show that q10k+1/q10k ≡ 10 (mod 1)00 for
k ≥ 2. Using the formula:

q10k+1/q10k =
A10k+1 − 1

A10k − 1

= 1 +A10k + ...+ (A10k)9

≡ 10 (mod 100)

where in the last line we used that 100 | (10qk) | A10k − 1.

The last problem should provide an inkling of how the proof might go in general (for any linear
function Q). Surprisingly, the proof for general Q proceeds rather similarly, so we will dive right
into it.

1.2 The main proof

We will temporarily make the following assumptions:

• n = p for some p prime

• the sequence {qi} contains all residues (mod pk) for some k ≥ 8.
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• no further assumptions on Q (in particular, it might not be linear).

We start off with some generic facts about the sequence:

5. (a) [1] Prove that {qi} is eventually periodic modulo pk+1 (i.e. for some fixed N and t, for
all n ≥ N we have qn+t ≡ qn (mod pk+1)).

(b) [1] Prove that {qi} is periodic modulo pj for 1 ≤ j ≤ k − 1 (i.e. for some fixed t, we
have qn+t ≡ qn (mod pj) for all n ≥ 0).

(c) [2] Show that the minimal period of {qi} modulo pj is pj for 1 ≤ j ≤ k.

In other words, if qn+t ≡ qt (mod pj) for all n ≥ 0, then t ≥ pj and that the congruence
holds for t = pj .

Solution to Problem 5:

(a) By pigeonhole, exists qi ≡ qj (mod pk+1) for some i < j. Then, qi+t ≡ qj+t (mod qk+1)
for all t.

(b) Note qi ≡ 0 (mod pj) at least p times. Let t be smallest positive integer such that qt ≡ 0
(mod pj), then qt+n ≡ qn (mod pj) for all n.

(c) Let t be a period of {qi} (mod pj). If t < pj it won’t cover all residues. Clearly by
pigeonhole, there is two equal elements among {q0, · · · , qpj}, so the eventual period
(which matches the actual period) is exactly pj .

In the linear case, we spent a lot of effort wrangling with the largest power of 10 that divided qn.
Here we introduce some notation to streamline this:

Definition. The p-adic valuation of an integer is the function vp(n) : Z→ N that describes the
exponent of the largest power of p that divides it:

vp(n) =

{
max{v ∈ N : pv | n} if n 6= 0

∞ if n = 0

6. Here is a quick warmup on valuations:

(a) [1] For each prime p dividing 2020, state the value of vp(2020).

(b) [1] List the first 20 terms of the sequence {v2(n)}n≥1.

Solution to Problem 6:

(a) Answer. v2(2020) = 2, v5(2020) = 1, v101(2020) = 1.

(b) Answer. 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2.

7. [3] Show that if vp(n) ≤ k − 1, then vp(qn) = vp(n).

Solution to Problem 7: The problem about minimal period means that for 1 ≤ j ≤ k,
pj | qn iff pj | n.

8. In this problem we recreate a “formula” for qn (modulo some power of p).
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(a) [2] Given any polynomial P (x) ∈ Z[x], show that there exists R(x) ∈ Z[x] such that for
all integers x, z, and positive integer n,

P (x+ zpn) ≡ P (x) + zpnR(x) (mod p2n)

(b) [4] Show that exists an integer α 6= 1 such that for all positive integers n and k ≥ 6,

qnpk−2 ≡ qpk−2 + αq(n−1)pk−2 (mod pk+2)

(c) [2] Hence, show that

qnpk−2 ≡
αn − 1

α− 1
qpk−2 (mod pk+2)

Solution to Problem 8:

(a) Let P (x) =
∑

i aix
i. Then, expanding, P (x + zpn) ≡

∑
i ai(x + zpn)i ≡

∑
i ai(x

i +
zpnixi−1) (mod p2n) So R(x) =

∑
i aiix

i−1 works.

Comment. One can think of this as the “Taylor expansion” with ε = zpn, so R(x) is in
fact P ′(x).

(b) First note that pk−2 | qpk−2 . Take P (x) = Qp
k−2

(x), and the corresponding R from the

previous part. Then qnpk = P (0 + q(n−1)pk) ≡ qpk−2 + R(0)q(n−1)pk−2 (mod p2k−4) by

letting zpk−2 = q(n−1)pk−2 . Since 2k − 4 ≥ k + 2 we are done.

Of course, one of R(0), R(0) + pk+2 will not be 1, so let α be that one.

(c) Inductively apply the previous part.

Because we don’t have a closed-form general formula for qn, we have to be more careful with our
control over the exponents (i.e. the values of vp(qn)). The following theorem will allow us to do
that (which you can subsequently use without proof):

Theorem. (Lifting the Exponent Lemma) If n is a positive integer and p is a prime, then

• for p 6= 2 and p|x− 1, then vp(x
n − 1) = vp(n) + vp(x− 1).

• for p = 2 and 4|x− 1, then v2(x
n − 1) = v2(n) + v2(x− 1).

This lemma tells us how to figure out the largest prime power that divides a number of the form
ab − 1.

9. (a) Find the largest power of 5 that divides the following numbers and justify your answers:
(i) [1] 101100 − 1 and (ii) [1] 99100 − 1.

(b) [5] Show that if vp(n) ≤ k + 1, then vp(qn) = vp(n). (Compare this to problem 7.)

(c) [1] Prove that {qi} (mod pk+1) has minimal period pk+1.

Solution to Problem 9:

(a) The answer to both is 54. For the latter, 99100 − 1 = 980150 − 1.

(b) vp(qpk−2) = k − 2 and vp(qpk−1) = k − 1, so from problem 8b for n = p we get that

vp

(
αp−1
α−1

)
= 1.
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If we can show that vp
(
αmp−1
α−1

)
= 1 + vp(m), then vp(qmpk−1) = (k − 1) + vp(m) as long

as vp(m) ≤ 2, as desired.

(c) By the above, the smallest index n for which qn ≡ 0 (mod pk+1) is n = pk+1, so by
earlier arguments this follows.

We can thus conclude that the sequence contains all residues modulo pk+1. By induction, the
sequence contains all residues modulo pm where m ≥ 8.

With just a little more work, we can generalize this for general composite n:

10. [4] Given a natural number n and k ≥ 8, if {qi} contains all residues modulo nk, then the
sequence contains all residues modulo nl for all positive integers l.

Solution to Problem 10: Fix any r ∈ N. We want to show that there exists some m such
that qm ≡ r (mod n`).

Consider the prime factorization n = pβ11 p
β2
2 · · · p

βj
j . By assumption, the sequence contains

all residues mod pkβii , so by the previous problem the sequence mod p
`βj
j has minimal period

p
`βj
j . Hence, there exists mj such that any m ≡ mj (mod p

`βj
j ) satisfies qm ≡ r (mod p

`βj
j ).

By the Chinese remainder theorem, there exists a single m for which m ≡ mj (mod p
`βj
j ), so

qm ≡ r (mod p
`βj
j ). Since {p`βjj } are coprime across j, it follows that qm ≡ r (mod n`).

2 Part II: van der Waerden’s theorem

2.1 Introduction

“Complete disorder is impossible.” - T. Motzkin

In this section, we will prove van der Waerden’s theorem:

Theorem. (van der Waerden) Let N = C1 ∪ C2 ∪ ... ∪ Cr be a finite partition of the natural
numbers (i.e. Ci and Cj are disjoint subsets of N for any i 6= j). Then some Cj , j ∈ {1, ..., r}
contains arbitrarily long2 arithmetic progressions3.

Here are some reasons why this might be surprising:

11. (a) [1] In the “finite partition” interpretation, perhaps you might figure out that one of
the sets Ci are infinite. However, this is not a good reason why it might contain long
arithmetic progressions.

In particular, construct an infinite subset S ⊂ N such that S does not contain any length
3 arithmetic progression.

(b) [10] Partitions can conspire (somewhat effectively) to avoid arithmetic progressions.

Suppose r = 100, k = 101. Show that {1, 2, ..., 10100} can be partitioned into r disjoint
subsets, each of which does not contain a length k arithmetic progression.

(Partial credit if you manage to partition {1, 2, ..., N} for N ≥ 105 or N ≥ 1010.)

2for all n0 ∈ N, Cj contains an arithmetic progression of length n ≥ n0.
3by convention, arithmetic progressions must have a positive common difference. In particular, constant sequences

are not arithmetic progressions.
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Solution to Problem 11:

(a) 1, 2, 22, ... works.

(b) (2 pts) N ≥ 105: Let

Ci = {a+ i · 102 + b · 104 | a, b ∈ {1, 2, ..., 100}}

(7 pts) N ≥ 1010: Let

Ci =


5∑
j=0

(100bj + aj)(200)i | aj = {1, 2, ..., 100}, (b5b4...b0)2 = i− 1


and in fact we’ll just use 64 out of the 100 sets. Each set alternates between “gaps” of
size 100 · 200i and a self-similar region of size 100 · 200i. However, there are only 9 such
gaps (in some region), so if you cross one such gap you have to cross 10 gaps of this size,
a contradiction.

(10 pts) N ≥ 10100: We use a non-constructive method. There are 100N partitions, and
there are at most N2 arithmetic progressions (N choices for first index, N choices for
common differences), so there are at most 100N−100 · N2 partitions that contain some
arithmetic progression. In fact, this is strict because some partitions contain more than
one arithmetic progression. This gives that N = 10050 works.

We can interpret this as a statement about letters and words. Here an infinite word on three
letters {a, b, c} (also called a ternary word) is:

W = abcb abcb abcb abcb ...

where the pattern repeats (and the spaces are purely decorative). We might say that:

• abcb is a finite word of length 4 that appears in W (and synonymously abcb is a subword
of W ).

• The letter a appears at indices 0, 4, 8, 12 and so on, and we will also say that the word
abcba appears at index 4 because its first letter appears at index 4.

• The word abcba is also a prefix (of W ) since it also appears at index 0.

• The letter a appears (in W ) at 4 indices which form an arithmetic progression.

In the language of words and letters, we can phrase van der Waerden’s theorem as follows:

Theorem. (van der Waerden, letters on words) Let W be an infinite word with r distinct letters.
Then, for any k, there exists some letter that appears at k indices which form an arithmetic
progression.

Generalizing from letters to words

Note: this subsection was missing from the contest version.

You might be tempted to attempt a proof by induction on the length of the arithmetic progression
k, but the statement of the theorem for k = m is much, much weaker than the statement for
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k = m+ 1. We must somehow do a double induction on r, k, but this is tricky because having more
(or less) letters creates an incompatibility that is hard to resolve.

Can we retain the full general power of the theorem while fixing the number of letters? A suggestion
could be to consider the point of view of a robot, which fundamentally understands only two letters.

12. Fix k ∈ N and consider the following two statements:

• For any natural r, given an infinite word W on r-distinct letters, there exists some letter
that appears at k indices which form an arithmetic progression.

• For any natural m, given an infinite binary word W , there exists some word of length
m that appears at k indices which form an arithmetic progression.

(a) [1] Show that the former implies the latter.

(b) [3] Show that the latter implies the former.

Solution to Problem 12:

(a) Treat each possible m-letter block of (binary) letters as an individual letter. Then this
follows from the first statement for r = 2m.

(b) We simulate the r-distinct letters using binary: let

wi = 11...1︸ ︷︷ ︸
i 1’s

00...0︸ ︷︷ ︸
(m+1−i) 1’s

for i = 1, 2, ...,m

then encode the i-th letter using wi Using the second statement for m = (r+1)(k+1), we
get matching words of length (r+1)(k+1) lying in an arithmetric progression. However,
these can be uniquely decoded into the original r-letters (possibly including a suffix and
a prefix, since an r-letter ends whenever we have the word ‘01’).

This shows that the latter is equivalent to the original van der Waerden’s theorem. As we shall see,
this turns out to be the right generalization to consider (though we will replace binary with r-ary
so that we have clearer examples).

Theorem. (van der Waerden, varying length) Let W be an infinite word with r distinct letters.
Then, for any k,m, there exists k instances of the same length m word such that their respective
indices form an arithmetic progression.

For subsequent problems in the rest of this section, assume that all (finite or infinite)
words are on an alphabet of size r.

2.2 Reducing to easier cases

Consider the following infinite word:

W = c ab c ab c aaabbbababbaaab...

where W continues with just the letters a and b (but with no obvious pattern).

If we want to find k of the same letter (in W ) appearing at indices that form an arithmetic
progression, it appears that we require van der Waerden’s theorem for infinite word on r = 3
letters. But here’s a trick: consider

T 7(W ) = aaabbbababbaaab...

9
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where T 7(W ) is W but with the first seven letters truncated. This is now an infinite word on
r = 2 letters, which is an easier case of the problem!

Now suppose that maybe we do manage to find k of the same letter appearing in T 7(W ) at indices
a, a+d, ..., a+(k−1)d. This letter must appear in the original W at indices a+7, (a+7)+d, ..., (a+
7) + (k − 1)d, which is an arithmetic progression.

Here is a definition that captures the essence of the relationship between W and T 7(W ):

Definition. Given two infinite words, we say that W ′ is included in W (equivalently, we write
W ′ ≺W ) if any finite subword of W ′ appears in W . We will sometimes say that W ′ is a reduction
of W .

For example, T 7(W ) ≺W , and equivalently T 7(W ) is a reduction of W .

Informally, this means if W ′ ≺ W , then whatever we find in W ′ will be in W , so the statement of
the theorem for W can be reduced to that of W ′.

13. (a) [2] Show that for every infinite word W , there exists an infinite word W ∗ ≺ W such
that any letter that appears in W ∗ will appear at infinitely many indices.

(b) [2] Show that for every infinite word W and a fixed m ∈ N, there exists an infinite
word W ∗ ≺W such that any word of up to length m that appears in W will appear at
infinitely many indices.

(c) [2] Construct a binary word W such that for any positive integer ` ∈ N, there is some
finite word w` that appears in T `(W ) finitely many times.

Solution to Problem 13:

(a) Suppose a letter last appears at index m. Then we can just truncate W before index
m+ 1. There are only finitely many letters, so we can just do this once for every letter.

(b) Similar to above.

(c) Something like this should work:

W = a b aa bb aaa bbb ...

Then we have aa...ab only ever appears once.

The conclusion is that we may assume (in the context of the theorem) without loss of generality,
every finite word w (up to some fixed length m) either appears infinitely often or not at all in W .

How might we extend this for all (infinitely many) finite words?

2.3 Limits

Here’s another example: consider the infinite (ternary) string

W = c a c ab c aba c abab c ababa c ababab c...

where between every two c’s we have a sequence of alternating a’s and b’s that increase in length.

Despite there being infinitely many c’s, we claim that remove them all without losing generality!
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14. [1] Indeed, show that W ′ = ab ab ab... satisfies W ′ ≺W .

Solution to Problem 14: The length n prefix of W ′ appears at index n(n+1)
2 , and every

subword of W ′ appears in some prefix of W ′, so we conclude that every subword of W ′ appears
in W .

One perspective to understand this is to consider a sequence of truncations:

T 1(W ) = a c ab c aba c abab c ababa c ababab c...

T 3(W ) = ab c aba c abab c ababa c ababab c...

T 6(W ) = aba c abab c ababa c ababab c...

T 10(W ) = abab c ababa c ababab c abababa c...

T 15(W ) = ababa c ababab c abababa c...

T 21(W ) = ababab c abababa c...

These words appear to converge to W ′ = ab ab ab ab....

Definition. A sequence of infinite words W1,W2, ... converges (to W ∗) if for each j ∈ N, the j-th
letter of Wi is eventually constant4 for large enough i (and equal to the j-th letter of W ∗). In the
example above, we say that W ′ converges to W .

Definition. We call X a T -limit of W if there exists indices n1 ≤ n2 ≤ ... where the sequence

Tn1(W ), Tn2(W ), Tn3(W ), ...

converges to X. In the example above, we would say that W ′ is a T -limit of W .

15. (a) [2] An infinite word can have more than one T -limit! (So we always want to say a
T -limit rather than the T -limit).

In fact, construct an infinite word X such that any infinite word W is a T -limit of X.

(b) [4] Here we make the connection between T -limits and reductions:

Show that W ∗ is a T -limit of W if and only if W ∗ ≺W .

(c) [5] (Closure property) Let X1, X2, ... be a sequence of T -limits of W that converge to
X∗. Show that X∗ is also a T -limit of W .

Solution to Problem 15:

(a) Just concatenate all natural numbers in r-ary.

(b) (⇒): This is clear since every finite subword of W ∗ lies in a truncation of W , and
truncations are reductions.

(⇐): Note that the length m prefix of W ∗ is somewhere in W , so it is the prefix of some
truncation T km(W ). Then we simply take an non-decreasing subsequence of (k1, k2, ...),
and the resulting subsequence of truncations will converge to W ∗.

(c) Suppose {Yi} → Y ∗. If Wn,k → Yn, then let f(n) be such that Wn,f(n) shares the first n
letters of Y ∗. Then we easily check that Wn,f(n) → Y ∗.

4i.e. for each j, there exists a positive integer Nj where the j-th letter of Wi are all the same for any i > Nj
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2.4 Compactness

In general however, the given word will not be as well-behaved. Consider instead the following
word:

W = c a c ab c ba c bba c ababbb c baabba c b c abababbaa c...

This time there isn’t a clear pattern of which words are between adjacent c’s. However, you could
imagine that if we were clever about picking the right subsequence, we could still obtain a T -limit
of W which might get rid of all the c’s (perhaps:

T 3(W ) = ab...

T 13(W ) = abab...

T 29(W ) = ababab...

and hopefully we can keep going).

Is this always possible? To answer this question, it might be helpful to consider the notion of a
strict limit, which somewhat generalizes T -limits:

Definition. W is a strict limit of the sequence of infinite words W1,W2,W3, ... if there is is an
infinite sequence of indices n1 < n2 < n3 < ... such that Wn1 ,Wn2 , ... converges to W .

For example, any T -limit ofW will be either a term or strict limit of the sequenceW,T 1(W ), T 2(W ), ....

16. Fix a sequence of infinite words W1,W2, .... We will show that at least one strict limit exists.

(a) [1] Show that the sequence {Wi} has a subsequence W
(1)
1 ,W

(1)
2 , ... whose first letters are

all equal to some letter a0.

Note: a subsequence of {Wi} must be of the form {Wi1 ,Wi2 , ...}, where i1 < i2 < ....

(b) [1] Show that the sequence {Wi} has a subsequence W
(2)
1 ,W

(2)
2 , ... whose first two letters

are (a0, a1) for some letter a1 (and a0 is the same as above).

(c) [3] Show that every infinite sequence of infinite words has a strict limit.

Solution to Problem 16:

(a) Infinite pigeonhole: some letter appears infinitely often as the first letter.

(b) Infinite pigeonhole again: in {W (1)
i }, some letter appears infinitely often as the second

letter.

(c) We continue the construction above to get an and {W (n)
k }. But {W (k)

k } will converge to
A = (a0, a1, ...), and the indices are strictly increasing.

17. [3] Let us revisit the last thing we wanted to prove in the “Reducing to an easier case” section:

Show that for every infinite word W , there exists an infinite word W ∗ ≺ W such that every
finite word in W ∗ that appears in W will do so at infinitely many indices.

Solution to Problem 17:

18. (Finitary van der Waerden) Here is a visible consequence of compactness. Consider the
following two versions of van der Waerden’s theorem:

12
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• (Original) For every r, k, given an infinite word W formed from r-distinct letters, there
are k of the same letters whose indices form an arithmetic progression.

• (Finitary) For every r, k, there exists N = N(r, k) where for any infinite word W with
r-letters, some letter appears at k indices forming an arithmetic progressions within
the first N letters of W .

(a) [2] Construct and justify a value of N(r, 2) that satisfies the conditions in the finitary
formulation.

(b) [4] Show that the latter statement is implied by the former statement above.

(Take note: you should prove that the same N works for any infinite word W .)

Solution to Problem 18:

(a) N(r, 2) = r + 1 works by pigeonhole.

(b) Suppose that the finitary version was false, so it is false for any N . Let WN be the
counterexample, then take W ∗ to be a ω-limit point of {WN}. Then W ∗ does not
contain any arithmetic progressions, since any prefix of W ∗ is contained in some WN .
This contradicts the original vdW.

2.5 Syndeticity

Armed with compactness, we will now show that we can discard any letter (and also any finite
word), possibly appearing infinitely often, for which there are increasing gaps between occurences
of that letter.

Definition. An increasing sequence of natural numbers {n1 < n2 < ....} is syndetic if it is both
infinite and has bounded gaps, i.e. there exists a constant C > 0 such that ni+1 − ni < C for all
i ∈ N.

Definition. If W is an infinite words and f is a finite word, we say that f densely populates
W if the set of indices at which f appears in W is syndetic. Otherwise, we say that f sparsely
populates W . For example, c sparsely populates W for

W = c a c ab c aba c abab c ababa c ababab c...

but a, b densely populates it.

19. [2] If w sparsely populates W , show that there exists a T -limit W ∗ of W which does not
contain w.

Solution to Problem 19: Write

W = w0 f w1 f w2 f ...

where each wi does not contain w. If some wi is infinite just use that. Otherwise just use a
ω-limit point of {wi}.

The above construction will prove to be very useful, so we give it a shorthand:

Definition. Write

[W ]f =

{
W ∗ a T -limit of W which does not contain f , if f sparsely populates W

W otherwise.

13
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20. Enumerate all finite words {f1, f2, ...}, and define a sequence of words as follows:

Wi =

{
W for i = 0

[Wi−1]fi otherwise

(a) [3] Show that fi does not sparsely populate Wj for all j ≥ i.

(b) [4] (Minimality condition) Deduce that there exists Wmin ≺ W where no fi sparsely
populates W .

Solution to Problem 20:

(a) It suffices to show that for any two words f, f ′, if f ′ sparsely populates [W ]f then f ′

sparsely populates W (then the problem follows immediately from the contrapositive).

Note that [W ]f contains arbitrarily long words of the form fxf (where x does not contain
f), but it is included in W , so W also contains arbitrarily long words of the form fxf .

(b) First note that inductively, Wi is a T -limit of W .

Let Wmin be a limit point of {Wi}. By closure, this is also a T -limit of W .

Because Wmin ≺ Wi for each i, by the same argument in the previous part we get that
Wmin cannot be sparsely populated by fi.

This means that we can replace W with Wmin where each of its subwords reappear such that the
gap between adjacent occurences is bounded (depending on the subword).

This construction is optimal in the following sense:

21. [2] Show that Wmin has the same set of (finite) subwords as any T -limit of itself. Furthermore,
each T -limit satisfies the minimality condition (problem 20b).

Solution to Problem 21: Let W ′ be a T -limit of W = Wmin. Then the subwords in W ′

must appear in W . However, each subword w of W must appear in W ′ since w appears in
any sufficiently long subword of W .

2.6 The main proof

We now have the fundamental ideas to prove van der Waerden’s theorem without too much diffi-
culty:

Without loss of generality, we may assume W satisfies the minimality condition (from the previous
section). Suppose that for some fixed k and infinite string W , van der Waerden (varying length
form) is true for any word length m.

22. Here is a surprising fact: syndeticity allows us to force the position of the arithmetic progres-
sion (i.e. we may assume without loss of generality that the arithmetic progression starts at
index 0) for any m.

(a) [3] Show that for any finite word w that appears in W will do so at k indices which form
an arithmetic progression.

14
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(b) [3] Show that there exists an infinite word W ∗ ≺ W such that for any prefix w of W ∗,
w appears in W ∗ at k indices forming an arithmetic progression starting with 0.

Solution to Problem 22:

(a) This follows by dense population + picking a large enough m′ where there are k length-m′

words in arithmetic progression.

(b) We inductively construct: let w1 be the first letter of W . Then ai is an index where
T ai(W ) starts with k equally-spaced instances of wi, and wi+1 is a prefix of T ai(W )
containing all k instances of wi. Then, {T ai(W )}i converges, and the limit satisfies this
property.

Now we give a hint of how we might be able to produce a longer arithmetic progression (of length
k + 1). Consider the case where r = 2 and m = 1, and suppose we’ve found a letter appearing at
indices 0, A, ..., (k − 1)A (represented by a black dot below). If the same letter was also at index
kA, we have found an arithmetic progression of length k + 1, but suppose otherwise. Then, using
the fact above, we can “clone” this arithmetic progression k times with some equal spacing B. We
represent this in the following diagram:

?

0 A 2A . . . (k − 1)A kA

kA+B

...

B A+B

...

(k + 1)(A+B)

However, depending on which letter appears at index (k + 1)(A + B), we are forced to have an
arithmetic progression of length (k + 1)!

23. Set W = W ∗ above and fix m. By assumption, for each m′ ∈ N, there should be a corre-
sponding n(m′) > m′ where the length m′ prefix of W repeats another k times with spacing
n(m′).

We will now show that there exists a length m word with (k+ 1) instances in W which form
an arithmetic progression.

Write a ∼ b for two indices a, b ∈ N if the first m letters of T a(W ) and T b(W ) match.

(a) [2] (Universe cloning lemma) Let Ω = {(x, y) | x ∼ y, x, y ∈ N}, and let S be a finite

15
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subset of Ω. Show that there exists d = d(S) such that S ⊕ d ⊂ Ω, where

S ⊕ d = {(x+ k1d, y + k2d) | (x, y) ∈ S, k1, k2 ∈ {0, 1, ..., k − 1}}

(b) [3] (Cloned arithmetic progressions) Suppose {(a, a)} ⊕ d′ ⊂ S (i.e. there is a length k
arithmetic progression starting at index a). Show that for d = d(S), the following both
hold:

{(a, a)} ⊕ d ⊂ S ⊕ d
{(a, a)} ⊕ (d+ d′) ⊂ S ⊕ d

(c) [3] Let S0 = ∅, d0 = k0 = 0. We inductively construct larger subsets of Ω as follows:

• S+
i = Si ∪ {(ai, ai)}) where ai = k(d1 + ...+ di−1).

• di+1 = d(S+
i )

• Si+1 = Si ⊕ di

Show that for any i < j, {(ai, ai)}+
aj−ai
k ∈ Ω.

(d) [1] Conclude that there are (k + 1) instances of some length m word in arithmetic
progression.

Solution to Problem 23:

(a) Let m′ = max{x, y : (x, y) ∈ Ω}+m. Then take d = n(m′).

(b) By construction, it follows that if T ⊂ S then T⊕d ⊂ S⊕d (so the first claim immediately
follows).

The second claim follows once we know that T ⊕ (d + d′) ⊂ (T ⊕ d′) ⊕ d, but this is
straightforward from the definitions.

(c)
aj−ai
d = di + ...+ dj−1, and furthermore

(...((Si ⊕ di)⊕ di+1)...⊕ dj−1) ⊂ Sj ⊂ Ω

(d) Among a0, a1, ..., arm , there are two terms ai ∼ aj , so by the above we have a length

(k + 1) arithmetic progression starting at index ai (with common difference
aj−ai
d .)

2.7 Applications

You are allowed to use any results from the previous sections without proof.

24. [4]Prove that every syndetic subset of N contains arbitrarily long arithmetic progressions.5

Solution to Problem 24: Let S = {n1 < n2 < ...} be the syndetic set, then suppose
N = max{ni+1−ni}. Then define S0 = 0, Si = S+ i\ (∪j≤i−1Sj). Notice that S0, S1, ..., Sn−1
are disjoint but cover N, so by van der Waerden’s theorem one of them contains arbitrarily long
arithmetic progressions. However, since Si − i ⊂ S, we conclude that S contains arbitrarily
long arithmetic progressions.

5Obviously, you need to use van der Waerden’s theorem somehow. But perhaps it’s interesting to note that you
could use this statement to prove van der Waerden’s theorem too!)
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25. [4]Let {a1 < a2 < ...} be a sequence of natural numbers containing arbitrarily long arithmetic
progressions. Suppose that there exists another sequence of natural numbers {b1 < b2 < ...}
such that the quantity |ai − bi| is bounded. Show that {bi} also contains arbitrarily long
arithmetic progressions.

Solution to Problem 25: Use finitary vdW: Suppose |ai − bi| ≤ C. let A be an arithmetic
progression of length N(k, 2C + 1) (as defined in the finitary vdW). Then A contains an
arithmetic progression A′ ⊂ A where (ai − bi) is constant for ai ∈ A′.

26. (a) [4] Let 〈x〉 denote the minimum distance from x to the nearest integer (or equivalently,
〈x〉 = min{x− bxc, bxc+ 1− x} where bxc is the greatest integer below x).

Show that for any irrational x and real number ε > 0, there exists positive integer n
such that 〈n2x〉 < ε.

(Hint: notice the identity (n+ 2k)2 − 2(n+ k)2 + n2 = (2k)2)

(b) [6] Prove that there are infinitely many perfect squares expressible as bnπ2020c. You
may use the fact that π2020 is irrational without proof.

Solution to Problem 26:

(a) Note firstly that 〈x− y〉 = 〈{x} − {y}〉.

Divide up [0, 1) into M > 1
2ε intervals of the form [ kM ,

k+1
M ). Each term {n2ε} falls into

one of the M intervals, so applying vdW, some interval contains {n2ε}, {(n+ k)2ε} and
{(n+ 2k)2ε} for some n, k ∈ N. Hence applying the identity we can finish.

(b) Let x = π2020. From the previous section, we know that k2/x is close to an integer
infinitely often (across k ∈ N), so there are infinitely many integers where nx is close to
some perfect square k2. If nx is slightly more than k2 infinitely often, then bnxc = k2

infinitely often. This translates to wanting k2/x to be slightly less than n infinitely often
(i.e. supk∈N{k2/x− bk2xc} = 1).

Let α = 1/x. We start by picking 〈k2(1/x)〉 = ε. Assume that k2(1/x) is slightly more
than an integer (i.e. {k2(1/x)} = ε).

Now we consider the above expression for k, 2k, 3k, ...,, so

{(ak)2(1/x)} where a ≥ 1 : ε, 4ε, 9ε, ...,m2ε, (m+ 1)2ε− 1

where m = dε−1/2e − 1 (i.e. the maximal m such that m22ε < 1). This means that
m2ε > 1− (2m+ 1)ε ≥ 1− 2ε1/2 − ε.

As ε→ 0, 1− {(mk)2(1/x)} → 0 which is what we wanted.
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