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1. Given x+ y = 7, find the value of x that minimizes 4x2 + 12xy + 9y2.

Answer: 21

Solution: Factoring,
4x2 + 12xy + 9y2 = (2x+ 3y)2.

This is minimized when 2x+ 3y = 0. So, 2x+ 3(7− x) = 0. Thus, x = 21.

2. There are real numbers b and c such that the only x-intercept of 8y = x2 + bx+ c equals its
y-intercept. Compute b+ c.

Answer: 48

Solution: Let the intercept be a. Then the equation may be rewritten as 8y = (x − a)2,
which equivalently can be written as y = 1

8(x − a)2. When x = 0, we have y = 1
8a

2 = a,
since we are given that the x-intercept and the y-intercept are equal. Solving for a, we
get a = 8. Finally, 8y = x2 − 16x + 64, so we know that b = −16 and c = 64, hence
b+ c = −16 + 64 = 48 .

3. Consider the set of 5 digit numbers ABCDE (with A 6= 0) such that A+B = C, B+C = D,
and C +D = E. What’s the size of this set?

Answer: 8

Solution: Observe that E = D + C = 2C + B = 3B + 2A and E ≥ D ≥ C ≥ A,B. We
proceed by computing the number of digits (A,B) with A 6= 0 such that 2A+ 3B < 10, and
apply casework on A:

A = 1: B can be 0, 1, or 2

A = 2: B can be 0 or 1

A = 3: B can be 0 or 1

A = 4: B can only be 0

Notice that once A and B are determined, the other digits are also determined. Hence, there
are a total of 8 such numbers.

4. Let D be the midpoint of BC in 4ABC. A line perpendicular to D intersects AB at E. If
the area of 4ABC is four times that of the area of 4BDE, what is ∠ACB in degrees?

Answer: 90

Solution: We have that the area of 4BDE is 1
2(BD)(ED), and the area of 4ABC is

1
2(BC)h = (BD)h, where h is the height of the altitude from A to BC. Since the area of
4ABC is four times that of 4BDE, we have that h = 2(ED). This is only possible if E is
the midpoint of AB. But then AE = BE = CE, so E is the circumcenter of 4ABC. But

E lies on AB, so AB is a diameter of the circumcircle, implying that ∠ACB = 90◦ .

5. Define the sequence c0, c1, . . . with c0 = 2 and ck = 8ck−1 + 5 for k > 0. Find limk→∞
ck
8k

.

Answer: 19
7

Solution 1: Notice that ck+1 = 8ck + 5, so ck+1 − ck = 8ck − 8ck−1. This gives us a
homogenous linear recurrence with characteristic polynomial x2 − 9x + 8 = 0, which has
roots 8, 1. This means that ck = a8k + b1k for some constants a, b. Using c0 = 2 and c1 = 21,
we can solve for a and b to find ck = 19

7 8k − 5
7 . Then, the answer immediately follows.

Solution 2: We can view this sequence in base 8. The zeroth term is 2. To produce the
next term, the digit 5 is appended to the end. Thus, the limit approaches 2.5555555.... in

base 8, which is 2 + 5
7 =

19

7
in base 10.
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6. Find the maximum possible value of |
√
n2 + 4n+ 5−

√
n2 + 2n+ 5|.

Answer:
√
2

Solution: Notice that

|
√
n2 + 4n+ 5−

√
n2 + 2n+ 5| = |

√
(n+ 2)2 + (0− 1)2 −

√
(n+ 1)2 + (0− 2)2|.

If we let P be the point (n, 0), A be the point (−2, 1) and B be the point (−1, 2) on the xy
coordinate plane, then the expression above represents the absolute difference between PA

and PB. By triangle inequality, AB ≥ PA−PB and AB ≥ PB−PA, so AB =
√

2 is the
maximum value. The triangle inequality tells us that this bound is tight when A,B, P are
collinear, which happens with n = −3.

7. Let f(x) = sin8(x) + cos8(x) + 3
8 sin4(2x). Let f (n)(x) be the nth derivative of f . What is

the largest integer a such that 2a divides f (2020)(15◦)?

Answer: 4037

Solution: Note that

(sin2(x) + cos2(x))4 = sin8(x) + cos8(x) + 4 sin2(x) cos2(x)(sin4(x) + cos4(x)) + 6 sin4(x) cos4(x)

= sin8(x) + cos8(x) +
3

8
sin4(2x) + sin2(2x)(1− 1

2
sin2(2x)).

So, we have that

sin8(x) + cos8(x) +
3

8
sin4(2x) = 1− sin2(2x)(1− 1

2
sin2(2x))

= 1−
(

1− cos(4x)

2

)(
3 + cos(4x)

4

)
=

5

8
+

1

4
cos(4x) +

1

8
cos2(4x).

Now f ′(x) is

− sin(4x)− cos(4x) sin(4x) = − sin(4x)− 1

2
sin(8x).

Hence, f (2020)(x) is

42019 cos(4x) +
1

2
82019 cos(8x)).

Taking x = 15◦, we have cos(4x) = 1
2 and cos(8x) = −1

2 . So, we have that

f (2020)(15◦) =
1

2
42019 − 1

4
82019 = 24037(1− 22018).

So, the largest power of two dividing the expression is 4037 .

8. Let Rn be the set of vectors (x1, x2, . . . , xn) where x1, x2, . . . , xn are all real numbers. Let
||(x1, . . . , xn)|| denote

√
x21 + . . .+ x2n. Let S be the set in R9 given by

S = {(x, y, z) : x, y, z ∈ R3, 1 = ||x|| = ||y − x|| = ||z − y||}

If a point (x, y, z) is uniformly at random from S, what is E[||z||2]?
Answer: 3

Solution:
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Note that if we write r1 = x, r2 = y − x, r3 = z − y, then we have

S = {(r1, r1 + r2, r1 + r2 + r3) : r1, r2, r3 ∈ R3, 1 = ||r1|| = ||r2|| = ||r3||}.

In this case, we have E[||z||2] = E[||r1 + r2 + r3||2]. Note that if (ri)j is the jth coordinate
of ri, then E[(ri)j ] = 0 by symmetry. So by linearity of independence, and the fact that
r1, r2, r3 are independent, we have

E[||z||2] = E[(r1)
2
1 + (r2)

2
1 + (r3)

2
1 + ...] + 2E[(r1)1(r2)1 + (r1)1(r3)1 + (r2)1(r3)1 + ...].

In this expansion, note that we can group the squared terms by ri, i.e.

E[(r1)
2
1 + (r2)

2
1 + (r3)

2
1 + ...] = E[||r1||2] + E[||r2||2] + E[||r3||2] = 1 + 1 + 1 = 3.

The other terms in this expansion are of the form E[(ri)j(rk)`] = E[(ri)j ]E[(rk)`] = 0. Thus,
we conclude that

E[||z||2] = E[||r1||2] + E[||r2||2] + E[||r3||2] = 3 .

9. Let f(x) be the unique integer between 0 and x − 1, inclusive, that is equivalent modulo x

to
(∑2

i=0

(
x−1
i

)
((x− 1− i)! + i!)

)
. Let S be the set of primes between 3 and 30, inclusive.

Find
∑

x∈S f(x).

Answer: 59

Solution: Expanding, we have that(
2∑
i=0

(
x− 1

i

)
((x− 1− i)! + i!)

)
= 2(x− 1)! +

(x− 1)!

2
+ 1 + (x− 1) + (x− 1)(x− 2).

By Wilson’s, if x is a prime, then (x− 1)! ≡ −1 mod x, hence we take the equation mod x
to get −2−2−1 + 1−1 + 2 = −2−1, where 2−1 denotes the multiplicative inverse of 2 mod n.
If x is an odd prime, then 2−1 is x+1

2 and hence f(x) = x−1
2 . The primes between 3 and 30

are 3, 5, 7, 11, 13, 17, 19, 23, and 29. Therefore, we compute that the desired sum is 59 .

10. In the Cartesian plane, consider a box with vertices (0, 0), (227 , 0), (0, 24), (227 , 24). We pick
an integer a between 1 and 24, inclusive, uniformly at random. We shoot a puck from (0, 0)
in the direction of (227 , a) and the puck bounces perfectly around the box (angle in equals
angle out, no friction) until it hits one of the four vertices of the box. What is the expected
number of times it will hit an edge or vertex of the box, including both when it starts at
(0, 0) and when it ends at some vertex of the box?

Answer: 113
6

Solution: More generally, consider a box with vertices (0, 0), (m, 0), (0, n), (m,n), where
m 6= 0 and n is a positive integer. We pick an integer a between 1 and n, inclusive, uniformly
at random. We will show that it hits the box n+a

gcd(n,a) times. This formula is sufficient to do
casework to calculate the expected value requested in the question.

Consider tiling the entire plane with many translated copies of the box. From this point
of view, bouncing around the box just means traveling in a straight line. The puck only
stops when it hits one of the vertical lines marking a multiple of m in the x-direction and
simultaneously has y-coordinate that’s a multiple of n. Let’s say it stops after traveling k
box-widths. Then, we have that k is the smallest positive integer such that n divides ka, i.e.
k = n

gcd(n,a) .

Now, let’s count how many times this hits the box. Since it travels k box-widths, it hits
the vertical lines k + 1 = n

gcd(n,a) + 1 times. Moreover, it travels ak
n = a

gcd(n,a) box-heights,
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so it hits the horizontal lines a
gcd(n,a) + 1 times. However, we’ve over-counted exactly twice,

since the puck simultaneously hits vertical and horizontal lines when it hits a vertex, and
that happens only at the very beginning and at the very end. Thus, the puck hits the edges
n+a

gcd(n,a) times, as claimed.

Now we need the expectation value of the number of hits. This is

1

24

24∑
a=1

24 + a

gcd(24, a)
=

113

6

11. Sarah is buying school supplies and she has $2019. She can only buy full packs of each of the
following items. A pack of pens is $4, a pack of pencils is $3, and any type of notebook or
stapler is $1. Sarah buys at least 1 pack of pencils. She will either buy 1 stapler or no stapler.
She will buy at most 3 college-ruled notebooks and at most 2 graph paper notebooks. How
many ways can she buy school supplies?

Answer: 4033

Solution: We can create generating functions that describes the number of ways to buy
supplies given $n. The pens gives us the generating function 1 + x4 + x8 + ... = 1

1−x4 and

the pencils give us x3 + x6 + ... = x3

1−x3 . Then the stapler gives us a factor of (1 + x). Now

the notebook conditions give us 1 + x+ x2 = 1−x3
1−x and 1 + x+ x2 + x3 = 1−x4

1−x . Multiplying
these together, we have

1

1− x4
x3

1− x3
1 + x

1

1− x3

1− x
1− x4

1− x
= (1− x)

x3(1 + x)

(1− x)3

Recognizing (or deriving with derivatives using the generating function 1
1−x =

∑∞
n=0 x

n) we

know that x3(1+x)
(1−x)3 =

∑∞
n=0 n

2xn+2. So, we know that

(1− x)
∞∑
n=0

n2xn+2 =
∞∑
n=3

((n− 2)2 − (n− 3)2)xn

Finding the coefficient in front of n = 2019 gives us the number of ways to buy school
supplies, which is 20172 − 20162 = 4033 .

12. Let O be the center of the circumcircle of right triangle ABC with ∠ACB = 90◦. Let M be
the midpoint of minor arc ÂC and let N be a point on line BC such that MN ⊥ BC. Let
P be the intersection of line AN and the Circle O and let Q be the intersection of line BP
and MN . If QN = 2 and BN = 8, compute the radius of the Circle O.

Answer: 5

Solution: Let X be the intersection between OM and AC. Since M is the midpoint of
arc AC, ∠MXC = 90◦. But we also have ∠MNC = 90◦ and ∠NCX = 90◦, so from
quadrilateral MNCX we have that ∠NMX = 90◦. It follows that NM is tangent to Circle
O.

Since P lies on Circle O, ∠APB = 90◦. Then ∠QPN = ∠APB = 90◦ = ∠QNB and
∠NQP = ∠BQN , we have that4NPQ ∼ 4BNQ. Then QN

QB = QP
QN =⇒ QP (QB) = QN2.

But by Power of a Point, QP (QB) = QM2, so QM = QN = 2. Thus, MN = 4.

From ∠MNB = 90◦ = ∠NMO, we have OM ||BN , so BOMN is a trapezoid. Let Y be
the perpendicular drawn from O to BC and let r be the radius of Circle O. Then we have
BY = BN−NY = BN−MO = 8−r. Also, OY = MN = 4. By the Pythagorean Theorem
on right triangle BOY , we have r2 = (8− r)2 + 42. Solving for r, we get r = 5 .
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13. Reduce the following expression to a simplified rational:

1

1− cos π9
+

1

1− cos 5π
9

+
1

1− cos 7π
9

Answer: 18

Solution: Rewrite the expression as

3∑
i=1

1

1− cos θi
.

The biggest annoyance is that θi all have a 9 in the denominator. If only the angles were all
multiplied by 3 – the problem would be much easier! In fact, cos(3θi) = 1

2 for all i. Then,
using the triple angle formula, 4 cos3 θi − 3 cos θi = 1

2 . Let xi = cos θi. Then we wish to
compute

3∑
i=1

1

1− xi

given that

f(x) = 4(x− x1)(x− x2)(x− x3) = 4x3 − 3x− 1

2
.

The next obstacle is that the original expression is in terms of 1 − xi. Let’s take a look at
f(1− x) whose roots are ri = 1− xi:

f(1− x) = 4(1− x)3 − 3(1− x)− 1

2
→ x3 − 3x2 +

9

4
x− 1

8
= (x− r1)(x− r2)(x− r3),

where I normalize the rightmost equation by the leading coefficient. Using Vieta’s formulas,
we can finally compute

3∑
i=1

1

1− cos θi
=

3∑
i=1

1

ri
=

1

r1r2r3
· (r1r2 + r2r3 + r3r1) =

1

(1/8)
· (9/4) = 18 .

14. Compute the following integral: ∫ ∞
0

log
(
1 + e−t

)
dt.

Answer:
π2

12

Solution: The following Taylor series is well known:

log(1 + x) =

∞∑
n=1

(−1)n−1xn

n
.
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It converges for x ∈ (−1, 1]. We see that e−t ∈ (0, 1] for t ∈ [0,∞), so we can safely
use the Taylor expansion in the integral. Glossing over why the integral and sum can be
interchanged, we find the following:

∫ ∞
0

log
(
1 + e−t

)
dt =

∫ ∞
0

∞∑
n=1

(−1)n−1e−nt

n
dt =

∞∑
n=1

(−1)n−1

n

∫ ∞
0

e−ntdt =

=
∞∑
n=1

(−1)n−1

n

(
−e−nt

n

)∣∣∣∣∞
0

=
∞∑
n=1

(−1)n−1

n2
.

This is pretty similar to the well known S =
∑∞

n=1
1
n2 = π2

6 . The alternating version of this
sum is just the original sum minus twice the sum of the even squares. In other words,

∫ ∞
0

log
(
1 + e−t

)
dt =

∞∑
n=1

(−1)n−1

n2
=

∞∑
n=1

1

n2
− 2

∞∑
n=1

1

(2n)2
= S − S

2
=

π2

12
.

15. Define f(n) to be the maximum possible least-common-multiple of any sequence of positive
integers which sum to n. Find the sum of all possible odd f(n).

Answer: 124

Solution: It is certainly possible to get this answer with a mix of computation and intuition.
Here is a formal proof.

For convention, let us call a sequence (s1, s2, . . . , sk) of positive integers “optimal for n” if∑
i si = n and LCM(s1, s2, . . . , sk) = f(n).

We notice a few things.

• There exists an optimal arrangement (s1, s2, . . . , sk) for n with GCD(s1, s2, . . . , sk) = 1.
Say that (s1, s2, . . . , sk) is an optimal arrangement and assume ∃i, j with si = ab and
sj = ac, with a being some positive integer greater than 1 and b and c relatively prime.
Then we can replace sj in the list with (a, 1, 1, . . . , 1) (with 1 repeated (ac)− (a) times).
We can continue doing this on any pairs si, sj that are not relatively prime until we
have a longer list with elements pairwise relatively prime. Note the LCM is the same so
this arrangement is also optimal, and all elements are pairwise relatively prime. Thus,
we will continue under the assumption that all optimal arrangements considered consist
only of elements which are pairwise relatively prime. (Note, all positive integers are
relatively prime to 1).

• There exists an optimal arrangement (s1, s2, . . . , sk) for n with all elements powers
of primes, or 1. If we have si = pe11 p

e2
2 , we can simply replace it with the sequence

(pe11 , p
e2
2 , 1, 1, . . . , 1), where there are pe11 p

e2
2 −p

e1
1 −p

e2
2 repetitions of 1 (it is easy to show

that this is nonnegative). We can adopt a similar argument on any elements that are
the product of multiple prime powers. Thus, we can repeat this process until we have
a list consisting of (pairwise relatively prime) prime powers and 1’s.

• Consider an optimal arrangement for n, (s1, s2, . . . , sk) with all elements pairwise rel-
atively prime prime powers and 1’s. Consider the smallest p such that an element pa

appears in the list, with a > 0. We show p < 5. If p ≥ 5 and a = 1, we can replace
p with p − 2 and 2. Obviously 2 × (p − 2) > p. Note also that 2 and p − 2 must be
pairwise relatively prime to one another because p is prime, and to every other element
in the list, because all other elements in the list are prime powers derived from larger
primes. So the LCM of 2, p− 2, and the rest of the list is indeed the product of all of



SMT 2019 Team Test Solutions March 2, 2019

these numbers. Thus because 2 × (p − 2) > p this is a contradiction of the fact that
the list is optimal for n. Consider now if a > 1. Then, similarly, we can replace pa

by the sequence (pa−1, p− 2, 2, 1, 1, . . . , 1) where there are pa − pa−1 − p 1’s. Note that
pa − pa−1 − p = pa−1(p − 1) − p > 0 for a > 1 and any p. The argument regarding
relatively primeness is the same as with a = 1.

• From here on, let us consider an optimal arrangement that does not contain any powers
of 2 (this is the interesting case - when f(n) is odd). Now we show that all primes in the
list must be raised to the first power. Consider some prime p such that pa is in the list,
a > 1. Clearly, there is a power of 2 (call it 2x) between p and 2p. In this case we could
replace pa by the sequence (pa−1, 2x, 1, 1, 1 . . . , 1) where there are pa−pa−1−2x 1’s. It is
easy to see pa−pa−1−2x ≥ 0, because pa−pa−1−2x > pa−pa−1−2p = pa−1(p−1)−2p
and clearly pa−1(p − 1) ≥ 2p, because p − 1 ≥ 2 by assumption p is odd and pa−1 ≥ p
by assumption a > 1. We are now contributing pa−12x to our LCM instead of pa, but
pa−12x > pa which is a contradiction that the arrangement is optimal. Thus all primes
must be raised to the first power.

• Given that we have an optimal arrangement where all elements of the list are odd, we
can prove that primes (recall we also proved that they are all raised to power 1) must
appear in consecutive order. Say that primes p1 and p3 appear in the list, and they
are not consecutive primes (i.e., there is at least 1 prime p2 with p1 < p2 < p3). By
Bertrand’s Postulate, we can choose some p2 with p1 < p2 < p3 and p2 > p3/2. Then,
we can replace p3 by the sequence (p2, p3 − p2). Because p3 − p2 is even, it contributes
a factor of 2 to the LCM, and p2 contributes a factor of p2. Thus, we have replaced
the factor of p3 in the LCM with (at least) 2p2, which is larger than p3. This is a
contradiction that the arrangement is optimal, thus in an optimal arrangement with all
terms odd, no two primes can appear in the list without all of the primes between them
also appearing in the list.

• Taking all of our results about optimal arrangements and odd optimal arrangements
together, we find that every odd optimal arrangement is in the form

(1, 1, . . . , 1, 3, 5, . . .),

continuing up the odd primes consecutively. Our final (and most important) result is
that the number 11 cannot be included in an odd optimal arrangement. We already
proved that all odd optimal arrangements must contain 3 (because the lowest prime
must be smaller than 5). So then consider a list that contains 3 and 11. We can replace
3 and 11 with 1, 4, and 9. Note that these replacements leave the optimal arrangement
relatively prime, so we can again consider the LCM as the product of elements. And
note that 9× 4 > 3× 11. Thus we have improved the arrangement, so it is not optimal.
So no odd arrangement that contains 11 is optimal. Recall that we proved before that
in an odd optimal arrangement, all prime factors must appear consecutively; thus, if an
odd optimal arrangement does not contain 11, it cannot contain 13, 17, etc. Thus no
odd optimal arrangement contains any terms 11 or greater.

• Finally, it is obvious that an odd optimal arrangement cannot contain more than a
single 1 - else, we could replace it with a 2 and increase the LCM. Moreover, if we have
3 in our optimal odd arrangement, then we must not have any 1’s: if we have a 1, then
we can replace 3 and 1 with 4, which is relatively prime to all odd primes and thus
increases the LCM.

• Thus the only odd arrangements that we have not ruled out from being optimal are

(1), (3), (3, 5), (3, 5, 7).

With computation, we can see that these are all optimal and that they yield distinct
f(n) of 1, 3, 15, 105. Therefore, the answer is 124 .


