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JZ03 1. Suppose A and B are points in the plane lying on the parabola y = x2, and the x-coordinates
of A and B are −29 and 51, respectively. Let C be the point where line AB intersects the
y-axis. What is the y-coordinate of C?

Answer: 1479

Solution: Since the coordinates of A and B are (x1, x
2
1) and (x2, x

2
2) for x1 = −29 and

x2 = 51, it follows that the slope of line AB is

m =
x22 − x21
x2 − x1

=
(x2 + x1)(x2 − x1)

x2 − x1
= x2 + x1.

Since the line passes through A = (x1, x
2
1), the slope-point formula gives the formula of the

line to be

y − x21 = (x2 + x1)(x− x1)
y = (x2 + x1)x− (x2 + x1)x1 + x21

y = (x2 + x1)x− x1x2

Thus the y-intercept of the line is −x1x2 = −(−29)(51) = 1479 .

HH01 2. Cindy has a collection of identical rectangular prisms. She stacks them, end to end, to form
1 longer rectangular prism. Suppose that joining 11 of them will form a rectangular prism
with 3 times the surface area of an individual rectangular prism. How many will she need to
join end to end to form a rectangular prism with 9 times the surface area?

Answer: 41

Solution 1: Let n be the number of boxes stacked together, and let m be the resulting
multiplier on the surface area (i.e. the resulting box has m times the surface area of an
individual box). Letting x, y be the lengths of the sides of the box and z be the height of
the box, we may write

2xy + 2x(nz) + 2y(nz) = m(2xy + 2xz + 2yz)

(n−m)(x+ y)z = (m− 1)xy

n−m
m− 1

=
xy

(x+ y)z
.

Note that the right side is a constant because x, y, z are fixed. Furthermore, we are given
n = 11 and m = 3, so plugging this in gives us 11−3

3−1 = 4 = xy
(x+y)z . Therefore, we must find

n such that n−9
9−1 = 4, which solves to n = 41 .

Solution 2: Note that after stacking 10 additional boxes, you gain 2 additional boxes worth
of surface area. This ratio is constant, so if we need n additional boxes to get 8 additional
boxes worth of surface area, we have the equation n

8 = 10
2 . Solving yields n = 40, which

means we need a total of 41 boxes.

EX12 3. A lattice point is a point (a, b) on the Cartesian plane where a and b are integers. Compute
the number of lattice points in the interior and on the boundary of the triangle with vertices
at (0, 0), (0, 20), and (18, 0).

Answer: 201

Solution: We first compute the number of lattice points on the segment from (0, 20) to
(18, 0). The equation of the line connecting those two points is 10x + 9y = 180, so lattice
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points are of the form (18 − 9t, 10t) for some integer t. Counting, we find that the only
lattice points on the line are (0, 20), (9, 10), and (18, 0), so there are 3 points on the segment
connecting (0, 20) and (18, 0).

Next, consider the rectangle with vertices at (0, 0), (0, 20), (18, 20), and (18, 0). The number
of lattice points in or on the desired triangle is exactly half of the lattice points in the
rectangle, if we add the points on the diagonal twice. The rectangle creates a 21× 19 lattice

grid, so the answer is
21 · 19 + 3

2
= 201 .

KW04 4. Let 1 = a1 < a2 < a3 < ... < ak = n be the positive divisors of n in increasing order. If
n = a33 − a32, what is n?

Answer: 56

Solution: We first consider the case where n is odd. Note that all of its factors, including
a2 and a3, must be odd. However, because n = a33 − a32, n would then be the difference of
two odd numbers, implying that n is even, a contradiction.

Therefore, n must be even, so a2 = 2. Now suppose that a3 is odd. Again, because n = a33−8,
n would then be the difference between an odd an and even number, implying that n is odd,
another contradiction.

Therefore, a3 must also be even. We can thus write a3 = 2k for some positive integer k.
Note that k is also a factor of n and k < 2k, so we must have either a1 = k or a2 = k. If
a1 = k = 1, then a3 = 2, contradicting the fact that a2 < a3. Therefore, a2 = k = 2, so
a3 = 4. Finally, we compute n = 43 − 23 = 56 .

KW16 5. A point (x0, y0) with integer coordinates is a primitive point of a circle if for some pair of
integers (a, b), the line ax + by = 1 intersects the circle at (x0, y0). How many primitive
points are there of the circle centered at (2,−3) with radius 5?

Answer: 5

Solution: If there exists (a, b) such that ax + by = 1, then x and y must be coprime. We
proceed by using the equation of a circle to find all of the integer points (x, y) where x and
y are coprime.

We can describe the circle in the problem with the equation (x−2)2 + (y+ 3)2 = 25. Solving
the equation in terms of y, we find that y = −3±

√
−(x− 2)2 + 25. Hence, for (x, y) to be

a lattice point, we need −(x− 2)2 + 25 to be a square. Enumerating over all possible values
of x, we find that −(x − 2)2 + 25 is a square when x = −3,−2,−1, 2, 5, 6, 7. This gives us
the following pairs for (x, y):

• (−3,−3), which are not coprime

• (−2,−6) and (−2, 0), both of which are not coprime

• (−1,−7) and (−1, 1), both of which are coprime

• (2,−8) and (2, 2), both of which are not coprime

• (5,−7) and (5, 1), both of which are coprime

• (6,−6) and (6, 0), both of which are not coprime

• (7,−3), which is coprime

In total, there are 5 (x, y) pairs such that x and y are coprime, so there are 5 primitive
points of the given circle.

LK02 6. Three distinct points are chosen uniformly at random from the vertices of a regular 2018-gon.
What is the probability that the triangle formed by these points is a right triangle?
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Answer: 3
2017

Solution: Consider the circle which circumscribes the regular 2018-gon. Note that all of
the vertices of the regular 2018-gon lie on the circle. Thus, the 3 vertices chosen form a right
triangle if and only if 2 of the vertices are diametrically opposite from each other. There
are 2018

2 = 1009 ways for this to occur, and there are 2018− 2 = 2016 ways of choosing the
additional third point of the right triangle.

On the other hand, there are
(
2018
3

)
ways of choosing any 3 distinct vertices of the 2018-gon

to form a triangle. Therefore, the probability of forming a right triangle is

1009 · 2016(
2018
3

) =
1009 · 2016
2018·2017·2016

3·2
=

3

2017
.

KW01 7. Consider any 5 points placed on the surface of a cube of side length 2 centered at the origin.
Let mx be the minimum distance between the x coordinates of any of the 5 points, my be
the minimum distance between y coordinates, and mz be the minimum distance between z
coordinates. What is the maximum value of mx +my +mz?

Answer: 3
2

Solution: Applying the pigeonhole principle to each axis, we see that the maximum values
of mx,my,mz are all 1

2 . Furthermore, in this case the coordinates of each of the points must
lie in the set {−1,−1

2 , 0,
1
2 , 1}. It remains to construct values for the 5 points that will work.

Note that a point is on the surface of the cube if at least one of the coordinates of a point
has absolute value 1. We have 6 coordinates with absolute value 1, and only 5 points, so we
can easily choose them to lie on the surface of the cube and satisfy the desired properties.
For example, the points(

−1,
1

2
, 0

)
,

(
−1

2
, 1,−1

)
,

(
0,−1,−1

2

)
,

(
1

2
, 0, 1

)
,

(
1,−1

2
,
1

2

)

satisfy the given conditions. Therefore, the maximum value is 1
2 + 1

2 + 1
2 =

3

2
.

EY04 8. Eddy has two blank cubes A and B and a marker. Eddy is allowed to draw a total of 36
dots on cubes A and B to turn them into dice, where each side has an equal probability of
appearing, and each side has at least one dot on it. Eddy then rolls dice A twice and dice B
once and computes the product of the three numbers. Given that Eddy draws dots on the
two dice to maximize his expected product, what is his expected product?

Answer: 32

Solution: Suppose the faces of dice A are labeled as a1, ..., a6 and the faces of dice B are
labeled as b1, ..., b6. We are given that a1 + · · ·+ a6 + b1 + · · ·+ b6 = 36. We can then write
the expected product as

1

63
(a1 + · · ·+ a6)

2(b1 + · · ·+ b6).

If we let a = a1 + · · ·+ a6 and b = b1 + · · ·+ b6, then we can reduce this to maximizing a2b
63

under the constraint a+ b = 36.

Note that it suffices to maximize a2b, which we can do using AM-GM as follows:

a+ b

3
=
a/2 + a/2 + b

3
≥ 3

√
a2b

4

where equality (and thus the maximum) holds when a/2 = b. Since a + b = 36, equality

occurs when a = 24 and b = 12, giving us a maximum expected value of 242·12
63

= 42 ·2 = 32 .
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EX03 9. Let ABCD be a square. Point E is chosen inside the square such that AE = 6. Point F
is chosen outside the square such that BE = BF = 2

√
5, ∠ABF = ∠CBE, and AEBF is

cyclic. Compute the area of ABCD.

Answer: 32

Solution: Since ∠ABF = ∠CBE, we have ∠EBF = ∠CBA = 90◦. Moreover, since
BE = BF = 2

√
5, 4EBF is a 45-45-90 triangle, so EF = 2

√
5 ·
√

2 = 2
√

10. Because
AEBF is cyclic, ∠EBF + ∠EAF = 180◦, so ∠EAF = 90◦. By the Pythagorean Theorem,

we find that AF =
√

(2
√

10)2 − 62 = 2. We can then apply Ptolemy’s Theorem on cyclic

quadrilateral AEBF to get 6(2
√

5) + 2(2
√

5) = AB(2
√

10). Solving, we get AB = 4
√

2, so
the area of ABCD is (4

√
2)2 = 32 .

HH20 10. Find the total number of sets of nonnegative integers (w, x, y, z) where w ≤ x ≤ y ≤ z such
that 5w + 3x+ y + z = 100.

Answer: 2156

Solution: The constraint that w ≤ x ≤ y ≤ z is pesky, so we attempt to remove it. Let
a = w, b = x − w, c = y − x, and d = z − y. Observe that a, b, c, d are all nonnegative
integers, since w, x, y, z are nonnegative. Then the number of solutions to the given equation
is equivalent to the number of solutions to the equation

5a+ 3(a+ b) + (a+ b+ c) + (a+ b+ c+ d) = 10a+ 5b+ 2c+ d = 100.

Next, we compute the total number of combinations by considering the sum in increments
of 10, where there are a total of 100/10 = 10 increments to consider. There are 3 possible
cases:

(a) The only increments of 10 are 10, 5 + 5, 2 + 2 + 2 + 2 + 2, and 1 + 1 + ...+ 1 = 1 · 10.
The number of solutions is equivalent to computing the number of ways of placing 10
balls in 4 urns, or of placing 3 dividers in 10 increments. Hence, there are

(
13
3

)
= 286

possible solutions.

(b) In addition to the above 4 increments, there is 1 increment of 10 consisting of some
combination of 5s, 2s, and 1s. In total, there are 7 ways of achieving this: 2, 2 + 2,
2 + 2 + 2, 2 + 2 + 2 + 2, 5, 5 + 2, and 5 + 2 + 2 (with each sum padded with 1s to equal
10). The number of ways of placing the 4 even increments of 10, 5 · 2, 2 · 5, and 1 · 10
is equivalent to the number of ways of placing 3 dividers in 9 increments. Hence, there
are

(
12
3

)
· 7 = 220 · 7 = 1540 possible solutions.

(c) In addition to the above 4 increments, there are 2 increments of 10 consisting of some
combination of 5s, 2s, and 1s. In total, there are 2 ways of achieving this: 5 + 2 + 2 + 2
and 5 + 2 + 2 + 2 + 2 (with each sum padded with 1s to equal 10). The number of
ways of placing the 4 even increments is equivalent to the number of ways of placing 3
dividers in 8 increments. Hence, there are

(
11
3

)
· 2 = 165 · 2 = 330 possible solutions.

Note that there are no possible cases, as adding additional 5s or 2s would result in additional
increments of 5 + 5 or 2 + 2 + 2 + 2 + 2.

In total, there are 286 + 1540 + 330 = 2156 total solutions to the original equation.

LK05 11. Let f(k) be a function defined by the following rules:

(a) f(k) is multiplicative. In other words, if gcd(a, b) = 1, then f(ab) = f(a) · f(b),

(b) f(pk) = k for primes p = 2, 3 and all k > 0,

(c) f(pk) = 0 for primes p > 3 and all k > 0, and
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(d) f(1) = 1.

For example, f(12) = 2 and f(160) = 0. Evaluate

∞∑
k=1

f(k)

k
.

Answer: 21
4

Solution: Note that when k is not divisible by only 2 and 3, f(k) = 0. Therefore, we
are only concerned with numbers of the form k = 2m · 3n, where m and n are non-negative
integers. Furthermore, because f(k) is multiplicative, if k = 2m · 3n, then

f(k)

k
=
f(2m · 3n)

2m · 3n
=
f(2m)

2m
· f(3n)

3n
=

m

2m
· n

2n
.

This allows us to rewrite our sum as the following product of sums

∞∑
k=1

f(k)

k
=

(
1 +

∞∑
m=1

m

2m

)(
1 +

∞∑
n=1

n

3n

)
.

Note that each term f(2m·3n)
2m·3n appears when we multiply m

2m from the left sum with n
2n from

the right sum. If m = 0, then the term f(3n)
3n = n

3n appears when we multiply the 1 in the
left sum with the n

3n term in the right sum. A similar case happens when n = 0.

Now let S =
∑∞

m=1
m
2m . We can calculuate

S − S

2
=

∞∑
m=1

m

2m
−
∞∑
m=1

m

2m+1

=
1

2
+
∞∑
m=2

m

2m
−
∞∑
m=2

m− 1

2m

=
1

2
+
∞∑
m=2

1

2m

=

∞∑
m=1

1

2m

= 1

Therefore, S = 2. Using a similar approach, we find that
∑∞

n=1
n
3n = 3

4 . Plugging these into

our product of sums, our original sum is thus (1 + 2)
(
1 + 3

4

)
=

21

4
.

LK12 12. Consider all increasing arithmetic progressions of the form 1
a , 1

b ,
1
c such that a, b, c ∈ N and

gcd(a, b, c) = 1. Find the sum of all possible values of 1
a .

Answer: 2 ln 2 − 1

Solution: Note: The solution below is incorrect, as it misses many triples (a, b, c) such as
(6, 4, 3). During the grading period, we were unable to determine the correct solution, and
so gave all teams credit for this problem.

Since 1
a is the initial term, the other subsequent terms are 1+r

a and 1+2r
a for some common

ratio r. To ensure that the subsequent 2 terms in the arithmetic progression have a numerator
of 1, we must have 1 + r | a and 1 + 2r | a. Therefore, a = k(1 + r)(1 + 2r). However, we
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must have k = 1, otherwise gcd(a, b, c) ≥ k > 1. Thus, a = (1 + r)(1 + 2r). Next, note that r
must be an integer, otherwise we can rearrange the above equation to form 1

c = 1+2r
a = 1

1+r
which would not be a valid fraction. Finally, we verify that every r ≥ 1 indeed gives us
an increasing arithmetic progression 1

(1+r)(1+2r) ,
1

1+2r , 1
1+r with common ratio r

(1+r)(1+2r) .
Therefore, it remains to compute the sum

∞∑
r=1

1

(1 + r)(1 + 2r)
=

∞∑
r=1

2

1 + 2r
− 1

1 + r

=
∞∑
r=1

2

1 + 2r
− 2

2 + 2r

= 2
∞∑
r=1

1

1 + 2r
− 1

2 + 2r

= 2

(
1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
The inner sum looks very similar to the Taylor series expansion of

ln 2 = 1− 1

2
+

1

3
− 1

4
+ · · ·

Therefore, our desired sum is 2
(
ln 2− 1

2

)
= 2 ln 2− 1 .

EX19 13. In 4ABC, let D, E, and F be the feet of the altitudes drawn from A, B, and C respec-
tively. Let P and Q be points on line EF such that BP is perpendicular to EF and CQ is
perpendicular to EF . If PQ = 2018 and DE = DF + 4, find DE.

Answer: 1011

Solution: Note that 4DEF is the orthic triangle of 4ABC, so A, B, and C are excenters
of 4DEF . Let ω1 be the excircle centered at B and ω2 be the excircle centered at C. Since
BP ⊥ EF and CQ ⊥ EF , PQ is an external tangent to ω1 and ω2. Furthermore, lines DE
and DF are internal tangents to ω1 and ω2. Let line DF touch ω1 at X and ω2 at Y . Let
P ′ and Q′ be on ω1 and ω2 respectively such that P ′Q′ is the other external tangent to ω1

and ω2. Let line DF intersect P ′Q′ at E′.

Since tangents from a point to a circle are equal in length, we have FP = FX, FQ = FY ,
E′P ′ = E′X, and E′Y = E′Q′. By symmetry of external tangents, we also have PQ = P ′Q′.
Then

2PQ = PQ+ P ′Q′

= (FP + FQ) + (E′P ′ + E′Q′)

= (FX + FY ) + (E′X + E′Y )

= (FX + E′X) + (FY + E′Y ′)

= E′F + E′F

= 2E′F

so PQ = E′F . But by symmetry of internal and external tangents, we see that E and E′

are reflections of each other across BC, and since D lies on BC, we have DE = DE′. Then
PQ = E′F = DE′ + DF = DE + DF . It follows that DE + (DE − 4) = 2018 and so
DE = 1011 .

NM04 14. Let A and B be two points chosen independently and uniformly at random inside the unit
circle centered at O. Compute the expected area of 4ABO.



SMT 2018 Team Test Solutions February 17, 2018

Answer: 4
9π

Solution: Recall that we can compute the area of 4ABC using the formula A = 1
2ab sinC.

Furthermore, for independent random variables X and Y , we have E[XY ] = E[X] · E[Y ].

By assumption, points A and B are chosen independently of each other, so the lengths of
OA and OB are also independent. Furthermore, if we let θ be the smaller angle between OA
and OB, then θ is also independent of the two side lengths. Therefore, we have

E[A] = E
[

1

2
·OA ·OB · sin θ

]
=

1

2
· E[OA] · E[OB] · E[sin θ].

Now for a point P chosen uniformly at random in a circle, the probability that OP = r is
proportional to r. We can show this by recalling that the circle of radius r has circumference
2πr, so if r1 = kr2, then the set of points of distance r1 from the center of the circle is k
times larger than the set of points of distance r2 from the center of the circle. Therefore, the
probability density function of the length of OP is f(r) = cr when r ∈ [0, 1] and 0 otherwise,
for some constant c. To find c, we solve

∫ 1
0 cr dr = 1, which gives us c = 2. Therefore, the

expected length of OP is

E[OP ] =

∫ 1

0
r · 2r dr =

2

3
.

On the other hand, θ is distributed uniformly at random from the interval [0, π] by symmetry.
Therefore, the expected value of sin θ is

E[sin θ] =
1

π

∫ π

0
sin θ dθ =

2

π
.

Plugging in these values, we get E[A] = 1
2 ·

2
3 ·

2
3 ·

2
π =

4

9π
.

HH19 15. Suppose that a, b, c, d are positive integers satisfying

25ab+ 25ac+ b2 = 14bc

4bc+ 4bd+ 9c2 = 31cd

9cd+ 9ca+ 25d2 = 95da

5da+ 5db+ 20a2 = 16ab

Compute a
b + b

c + c
d + d

a .

Answer: 161
30

Solution: We begin by moving all variables to the left hand side of the equations.

25 · a
c

+ 25 · a
b

+
b

c
= 14

4 · b
d

+ 4 · b
c

+ 9 · c
d

= 31

9 · c
a

+ 9 · c
d

+ 25 · d
a

= 95

5 · d
b

+ 5 · d
a

+ 20 · a
b

= 16
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Next, we apply Simon’s Favorite Factoring Trick

25 · a
c

+ 25 · a
b

+
b

c
+
b

b
= 15

4 · b
d

+ 4 · b
c

+ 9 · c
d

+ 9 · c
c

= 40

9 · c
a

+ 9 · c
d

+ 25 · d
a

+ 25 · d
d

= 120

5 · d
b

+ 5 · d
a

+ 20 · a
b

+ 20 · a
a

= 36

and factor to get

(25a+ b)

(
1

c
+

1

b

)
= 15

(4b+ 9c)

(
1

d
+

1

c

)
= 40

(9c+ 25d)

(
1

a
+

1

d

)
= 120

(5d+ 20a)

(
1

b
+

1

a

)
= 36

Multiplying all of the equations together, and grouping the same pairs of variables gives us[
(25a+ b)

(
1

a
+

1

b

)]
·
[
(4b+ 9c)

(
1

b
+

1

c

)]
·
[
(9c+ 25d)

(
1

c
+

1

d

)]
·
[
(5d+ 20a)

(
1

d
+

1

a

)]
= 15 · 40 · 120 · 36[

25 + 1 + 25 · a
b

+
b

a

]
·
[
4 + 9 + 4 · b

c
+ 9 · c

b

]
·
[
9 + 25 + 9 · c

d
+ 25 · d

c

]
·
[
5 + 20 + 5 · d

a
+ 20 · a

d

]
= 15 · 40 · 120 · 36

By AM-GM, we have
25·a

b
+ b

a
2 ≥

√
25 · ab ·

b
a = 5, so 25 · ab + b

a ≥ 10. In a similar fashion, we

also find that 4 · bc + 9 · cb ≥ 12, 9 · cd + 25 · dc ≥ 30, and 5 · da + 20 · ad ≥ 20. This gives us[
25 + 1 + 25 · a

b
+
b

a

]
·
[
4 + 9 + 4 · b

c
+ 9 · c

b

]
·
[
9 + 25 + 9 · c

d
+ 25 · d

c

]
·
[
5 + 20 + 5 · d

a
+ 20 · a

d

]
≥ (26 + 10)(13 + 12)(34 + 30)(25 + 20)

= 36 · 25 · 64 · 45

= 15 · 40 · 120 · 36

Since equality holds, we must have

25 · a
b

+
b

a
= 10

4 · b
c

+ 9 · c
b

= 12

9 · c
d

+ 25 · d
c

= 30

5 · d
a

+ 20 · a
d

= 20
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Solving these equations individually, we get a
b = 1

5 , b
c = 3

2 , c
d = 5

3 , and d
a = 2. Therefore, our

desired answer is 1
5 + 3

2 + 5
3 + 2 =

161

30
.
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KW30 1. Prove that if 7 divides a2 + b2 + 1, then 7 does not divide a+ b.

Answer: See proof

Solution: We first note that the only possible squares mod 7 are 0, 1, 2, 4. Now, if a2+b2+1 ≡
0 (mod 7), then we must have a2 + b2 ≡ 6 (mod 7). Therefore, we must have either a2 ≡ 2
(mod 7) and b2 ≡ 4 (mod 7) or vice versa. WLOG suppose that a2 ≡ 2 (mod 7) and b2 ≡ 4
(mod 7). Taking the square root of both sides yields a ≡ ±3 (mod 7) and b ≡ ±2 (mod 7).
However, we never have a+ b ≡ 0 (mod 7) given these values of a and b, so 7 does not divide
a+ b.

EY03 2. Consider a game played on the integers in the closed interval [1, n]. The game begins with
some tokens placed in [1, n]. At each turn, tokens are added or removed from [1, n] using the
following rule: For each integer k ∈ [1, n], if exactly one of k− 1 and k+ 1 has a token, place
a token at k for the next turn, otherwise leave k blank for the next turn.

We call a position static if no changes to the interval occur after one turn. For instance, the
trivial position with no tokens is static because no tokens are added or removed after a turn
(because there are no tokens). Find all non-trivial static positions.

Answer: See proof

Solution: We claim that a non-trivial static position exists if and only if n ≡ 2 (mod 3).
To show this, consider a token at position k. For k to not change, it must have exactly one
neighbor. WLOG, let it be at k + 1 so that k − 1 is empty. For k − 1 to not change, either
k−1 = 0 or k−2 has a token so that k−1 has two neighboring tokens. Then k−3 must also
have a token. However, the neighbors of k−3 look exactly like k, so we must have k−3i = 1
for some i ≥ 0. We can use a similar argument to show that k + 1 + 3j = n for some j ≥ 0
as well. The interval must therefore be of length k + 1 + 3j − (k − 3i) + 1 = 3(i + j) + 2,
as desired. Note that we can construct a non-trivial static position for all n ≡ 2 (mod 3) by
choosing appropriate values of i and j. For example, the static position for n = 5 will look
like XX_XX, where X denotes a token and _ denotes a blank space.

KW24 3. Show that if A is a shape in the Cartesian coordinate plane with area greater than 1, then
there are distinct points (a, b), (c, d) in A where a − c = 2x + 5y and b − d = x + 3y where
x, y are integers.

Answer: See proof

Solution: In vector notation,

(
a
b

)
denotes the vector (a, b). We note that the equations

mean that

(
a
b

)
−
(
c
d

)
= x

(
2
1

)
+y

(
5
3

)
. Now, notice that we can write

(
1
0

)
= 3

(
2
1

)
−
(

5
3

)
and

(
0
1

)
= 2

(
5
3

)
−5

(
2
1

)
. Hence, if we can write

(
a− c
b− d

)
as

(
m
n

)
where m,n are integers,

then we are done.

Now place A on top of the integer grid. We cut A into pieces using the integer axes, and
translate all of the pieces onto the square bounded by (0, 0), (0, 1), (1, 0), (1, 1). Note that
because we cut A using the integer axes, all translations are shifts using integer vectors.
Furthermore, shifting will not change the area contained in the grid. Because there is an
overlap between pieces in this square, there exist points (a, b) in one piece and (c, d) in
another piece that differ by an integer vector since they were shifted using integer vectors.
However, the area of A is greater than 1, the area of the unit square, and by the Pigeonhole
Principle, there must exist two pieces which overlap. Thus, we are done.

EY21 4. Let Fk denote the series of Fibonacci numbers shifted back by one index, so that F0 = 1,
F1 = 1, and Fk+1 = Fk+Fk−1. It is known that for any fixed n ≥ 1 there exist real constants
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bn, cn such that the following recurrence holds for all k ≥ 1:

Fn·(k+1) = bn · Fn·k + cn · Fn·(k−1).

Prove that |cn| = 1 for all n ≥ 1.

Answer: See proof

Solution: We begin with the following observation. We can rewrite the recurrence Fn =
Fn−1 + Fn−2 as Fn = F1 · Fn−1 + F0 · Fn−2. Substituting in Fn−1 = Fn−2 + Fn−3 gives us

Fn = F1 · (Fn−2 + Fn−3) + F0 · Fn−2 = F2 · Fn−2 + F1 · Fn−3.

Continuing along this manner, we see that for any 0 < k < n we can in fact write

Fn = Fk · Fn−k + Fk−1 · Fn−k−1.

Returning to the original problem, we can therefore write

Fn·(k+1) = F2n−1 · Fn·(k−1)+1 + F2n−2 · Fn·(k−1)
Fn·k = Fn−1 · Fn·(k−1)+1 + Fn−2 · Fn·(k−1).

Because we know that
Fn·(k+1) = bn · Fn·k + cn · Fn·(k−1)

we therefore have the system of equations

F2n−1 = bn · Fn−1
F2n−2 = bn · Fn−2 + cn

Solving for bn, we find

bn =
F2n−1
Fn−1

=
Fn−1 · Fn + Fn−2 · Fn−1

Fn−1
= Fn + Fn−2.

Plugging this into the second equation, we have

cn = F2n−2 − Fn−2(Fn + Fn−2)

= Fn−1 · Fn−1 + Fn−2 · Fn−2 − Fn−2 · Fn − Fn−2 · Fn−2
= Fn−1 · Fn−1 − Fn · Fn−2.

We prove that this last equation is ±1 by induction on n. For the base case, n = 2, we have
F1 ·F1−F2 ·F0 = 1−2 = −1. For the inductive step, suppose that Fn−2 ·Fn−2−Fn−1 ·Fn−3 =
±1. Then we have

Fn−1 · Fn−1 − Fn · Fn−2 = Fn−1 · Fn−1 − Fn−1 · Fn−2 − Fn−2 · Fn−2
= Fn−1 · Fn−3 − Fn−2 · Fn−2
= ∓1

completing the inductive step and the proof.

KW43 5. Let ABCD be a quadrilateral with sides AB,BC,CD,DA and diagonals AC,BD. Suppose
that all sides of the quadrilateral have length greater than 1, and that the difference between
any side and diagonal is less than 1. Prove that the following inequality holds:

(AB +BC + CD +DA+AC +BD)2 > 2|AC3 −BC3|+ 2|BD3 −AD3| − (AB + CD)3
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Answer: See proof

Solution: Let P = (AB+BC+CD+DA+AC+BD)2, S = 2|AC3−BC3|+2|BD3−AD3|,
and Q = (AB + CD)3, so we can rewrite the expression as P +Q > S.

Looking at the expression, we expect a fairly algebraic argument boiling down to the triangle
inequality. Thus, we try to reduce the expression to linear factors.

First, we reduce the expression to quadratic factors. Note that since the side lengths are all
greater than 1, we have Q = (AB + CD)3 > (AB + CD)2. Let Q′ = (AB + CD)2. It now
suffices to show that P +Q′ > S.

Now becase the difference between any side and diagonal is less than 1, we have

S = 2|AC3 −BC3|+ 2|BD3 −AD3|

≤ 2(
AC3 −BC3

AC −BC
) + 2(

BD3 −AD3

BD −AD
)

= 2(AC2 +BC2 +AC ·BC) + 2(AD2 +BD2 +AD ·BD)

< 2(AC2 +BC2 +AD2 +BD2) + 2(AC ·BC +AC ·AD +BC ·BD +AD ·BD)

Let the final expression above be S′. It now suffices to show that P +Q′ > S′. Rearranging,
we find this is equivalent to showing that

(AB +BC + CD +DA+AC +BD)2 + (AB + CD)2

− 2(AC ·BC +AC ·AD +BC ·BD +AD ·BD) > 2(AC2 +BC2 +AD2 +BD2)

We can then rewrite the left hand side as

(AB +BC + CD +DA)2 + (AC +BD)2 + 2(AB +BC + CD +DA)(AC +BD)

+ (AB + CD)2 − 2(AC ·BC +AC ·AD +BC ·BD +AD ·BD)

= (AB +BC + CD +DA)2 + (AC +BD +AB + CD)2

Incorporating this into the left hand side of the inequality above and rearranging, we have

(AB +BC + CD +DA)2 + (AB +AC +BD + CD)2

− 2(AC2 +BC2 +AD2 +BD2) > 0

Multiplying both sides by 2 and expanding gives us

2(AB +BC + CD +DA)2 − 4(BD2 +AC2)

+ 2(AB +AC + CD +BD)2 − 4(BC2 +AD2)

= (AB +BC + CD +DA)2 − (2BD)2 + (AB +BC + CD +DA)2 − (2AC)2

+ (AB +AC + CD +BD)2 − (2BC)2

+ (AB +AC + CD +BD)2 − (2AD)2 > 0

Note that (AB+BC+CD+DA)2− (2BD)2 = (AB+BC+CD+DA−2BD)(AB+BC+
CD+DA+ 2BD). By the triangle inequality, BC+CD > BD and DA+AB > BD, hence
AB +BC +CD+DA− 2BD > 0 and (AB +BC +CD+DA)2 − (2BD)2 > 0. Repeating
this for the other 3 pairs of differences in the inequality, we find that each pair is greater than
0. Hence, the inequality does hold. All of our steps are reversible, so the original inequality
also holds, as desired.


