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Introduction

This Power Round develops the many and varied properties of the Thue-Morse sequence, an infinite
sequence of 0s and 1s which starts 0, 1, 1, 0, 1, 0, 0, 1, . . . and appears in a remarkable number of
different contexts in recreational and research mathematics. We will see applications to geometry,
probability, game theory, combinatorics, algebra, and fractals. Nevertheless, we won’t even come
close to exhausting the amusing and useful properties of this sequence, some of which require
mathematics beyond our scope to discuss. If you find this topic interesting, be sure to check out
the references we will post on the SMT website for further information!

Remark: Regardless of which problem you decide to work on, it is recommended that you read
Problem 1 first to become familiar with the definitions.

Remark 2: The following problems rely heavily on the technique of proof by induction. If
you are not yet comfortable with induction, we have copies of an introduction available for you to
consult—ask your proctor.

Defining the Thue-Morse sequence

The first sign that there’s something special about the Thue-Morse sequence is that it’s hard to
make up your mind about how to define it, because there are numerous very different-looking
definitions which all turn out to be equivalent. In this problem, we work through a few of these
definitions and determine that each of them gives the same result. We refer to the nth term of the
Thue-Morse sequence by tn, starting with t0, t1, t2, . . . .

1. (a) [3] Our first definition is a simple recursive one. The zeroth term of the Thue-Morse
sequence is t0 = 0. For n a nonnegative integer, after the first 2n terms of the Thue-
Morse sequence (including the zeroth term) have been specified, construct the next 2n

terms by taking the first 2n terms, replacing each 0 by a 1, and replacing each 1 by a
0 (simultaneously). (This is called “bitwise negation”.) Therefore, we have t1 = 1, and
the next two terms are t2 = 1, t3 = 0. The zeroth through fifteenth terms (leaving out
the commas, as we will often do for convenience) are 0110100110010110.

Write down (no justification required) the 16th through 31st terms.

(b) [6] Our second definition is direct. The Thue-Morse sequence is the sequence {tn}
(n = 0, 1, . . . ) where tn is 1 if the number of ones in the binary (base-2) expansion of n
is odd and 0 if the number of ones in the binary expansion of n is even. For example, 5
is 1012 in base 2, which has two ones, so t5 = 0.

Prove that this definition gives the same sequence as the one from part (a).

(c) [6] Our third definition is recursive again, but uses a different recursion. The Thue-Morse
sequence is the sequence {tn} satisfying t0 = 0, t2n = tn, and t2n+1 = 1− tn.

Prove that this definition is equivalent to either of the first two definitions.

(d) [6] Our fourth definition is by a certain algorithm (known as a Lindenmeyer system).
We start with the single digit 0 (call this stage zero). At each stage, we take the digits
we already have, replace each 0 by a 01, and replace each 1 by a 10 (simultaneously). So
stage one is 01, stage two is 0110, and so on. The Thue-Morse sequence is the sequence
{tn} whose first 2n terms are the digits from stage n.

Prove that this definition is equivalent to any of the first three definitions. (Note that
as stated, it is not clear that this definition is even coherent, since it redefines each term
over and over again. Your job is to show that it nevertheless uniquely defines each term
as the corresponding term of the Thue-Morse sequence as given by parts (a)-(c).)
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Solution to Problem 1:

(a) 1001011001101001.

(b) Let {un} be the sequence given by this definition and {tn} be the sequence from part
(a). We proceed by induction. For the base case, we see that u0 = 0 = t0. Assume that
ui = ti for i from 0 to 2n − 1; then we claim that also ui = ti for i from 2n to 2n+1 − 1.
This is because if 0 ≤ i ≤ 2n − 1, then i has at most n digits in base 2, so the binary
expansion of i+ 2n is the same as the binary expansion of i except with an extra 1 and
maybe some 0s attached to the left from the 2n. Therefore the parity of the number of
1s in i+ 2n base 2 is always different from the parity of the number of 1s in i base 2, so
that ui+2n = 1− ui. But also ti+2n = 1− ti by definition. By the inductive hypothesis,
we have ui+2n = 1− ui = 1− ti = ti+2n . This completes the induction.

(c) Let {un} be the sequence given by this definition and {tn} be the sequence from parts
(a)-(b). We proceed by induction. For the base case, we see that u0 = 0 = t0. Assume
that ui = ti for i from 0 to 2n−1; then we claim that also ui = ti for i from 2n to 2n+1−1.
This is because if 0 ≤ j ≤ 2n−1, then u2j = uj , u2j+1 = 1−uj . But we also have t2j = tj
because the binary expansion of 2j is the same as the binary expansion of j except with
a 0 attached to the right, so they have the same number of 1s, and t2j+1 = 1− tj because
the binary expansion of 2j + 1 is the same as the binary expansion of j except with a 1
attached to the right, so the numbers of 1s in the two expansions always have different
parities. By the inductive hypothesis, t2j = tj = uj = u2j , t2j+1 = 1−tj = 1−uj = u2j+1.
This completes the induction.

(d) We prove by induction on n that if we run t0 · · · t2n−1 through one round of this algorithm
(which we will call F ), the result is t0 · · · t2n+1−1. For the base case, we see that F (0) =
01. Assume that F (t0 · · · t2n−1−1) = t0 · · · t2n−1. Let G be the bitwise negation function.
Note that F (G(0)) = F (1) = 10 = G(01) = G(F (0)) and similarly F (G(1)) = G(F (1)),
so in general F (G(x)) = G(F (x)) for a string x of 0s and 1s. Since G(t0 · · · t2n−1−1) =
t2n−1 · · · t2n−1 and G(t0 · · · t2n−1) = t2n · · · t2n+1−1, we conclude that

F (t2n−1 · · · t2n−1) = F (G(t0 · · · t2n−1−1))

= G(F (t0 · · · t2n−1−1))

= G(t0 · · · t2n−1)
= t2n · · · t2n+1−1

by the inductive hypothesis. This completes the induction.

Now we derive a few simple properties of the Thue-Morse sequence, just to play with it some
more.

2. (a) [5] Prove that the string t0t1 · · · t22n−1 is a palindrome for all n ≥ 0. (Recall that a
palindrome is a string of digits which reads the same forward and backward.)

(b) Let A be the set of all nonnegative integers n such that tn = 0. Let n ⊕m denote the
binary xor of n and m. (To compute the binary xor of n and m, we write both n and
m in binary, then add them without carrying. For example, if n = 5 and m = 13, then
n = 1012 and m = 11012, so n⊕m = 10002 = 8.)

(i.) [1] Compute 14⊕ 23.

(ii.) [5] Prove that if n and m are both in A, then n⊕m is also in A.
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(c) [6] Prove that given any finite string X = tata+1 · · · tb of consecutive terms from the
Thue-Morse sequence, there exists a number nX such that every string of nX consecutive
terms tk+1tk+2 · · · tk+nX

from the sequence must contain X.

(d) [6] Given a finite or infinite string T of 0s and 1s, let f(T ) be the string created by
simultaneously replacing each 0 by a 01 and each 1 by a 10. For example, if T = 001,
then f(T ) = 010110. Note that we previously saw this procedure in problem 1, part d.
A fixed point of f is an infinite string T such that f(T ) = T . Prove that f has exactly
two fixed points: the Thue-Morse sequence {tn}, and its bitwise negation (meaning the
sequence constructed from {tn} by replacing each 0 with a 1 and each 1 with a 0).

Solution to Problem 2:

(a) We proceed by induction. For the base case, we see that this is true for n = 0, when the
string is the single character t0. Assume that t0 · · · t22n−2−1 is a palindrome. Let G be
the bitwise negation function. Then we have

t22n−2 · · · t22n−1−1 = G(t0 · · · t22n−2−1)

= t22n−1 · · · t22n−1+22n−2−1

and

t0 · · · t22n−2−1 = G(t22n−2 · · · t22n−1−1)

= t22n−1+22n−2 · · · t22n−1.

By the inductive hypothesis, each of these strings is a palindrome (since bitwise negation
takes palindromes to palindromes). But it is clear that a sequence of four palindromes,
in which the inner two are the same and the outer two are the same, is also a palindrome.
This completes the induction.

Alternate solution: we can prove this directly from 1(b). Checking that t0 · · · t22n−1 is a
palindrome means checking that ti = t22n−1−i. But 22n − 1 in binary is a string of 2n
ones, so when we subtract the binary representation of i, we find that if i has k ones in
its binary representation, then 22n − 1− i has 2n− k ones. But k and 2n− k are of the
same parity, so we are done.

(b) (i) 14 = 11102 and 23 = 101112, so 14⊕ 23 = 110012 = 25.

(ii) We showed in Problem 1, part b that tn = 0 if and only if the number of ones in
the binary expansion of n is even. Suppose n has a(n) ones in its binary expansion and
m has a(m) ones, where a(m), a(n) are both even since tn = tm = 0. If k of these ones
are in the same digit place in both binary expansions, then n⊕m has a(n) + a(m)− 2k
ones in its binary expansion, since we “lose” 2 ones every time we add 1 + 1 in one of
the places in the expansion where the result is 0. But a(n) +a(m)−2k is a sum of three
even numbers, is therefore even, and so tn⊕m = 0.

(c) Let Y = t0 · · · t2n−1 be the shortest string of consecutive terms from the Thue-Morse
sequence which starts with t0, has length a power of 2, and contains X. As in part a,
we see that also Y = t2n+1+2n · · · t2n+2−1, and by the same reasoning we conclude that
furthermore Y = t2n+2+2n · · · t2n+2+2n+1−1 = t2n+2+2n+1 · · · t2n+2+2n+1+2n−1. In fact, if
we split the Thue-Morse sequence into blocks of size 2n+2, the string Y appears twice
in every block, once in the first half and once in the second half (this is a quick proof
by induction as usual). By the Pigeonhole Principle, every sequence of 2n+2 consecutive
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terms overlaps at least one of these blocks in at least half of its terms, and therefore
contains at least one copy of Y . So we are done.

(Note: another way to think about this is that the Thue-Morse sequence consists of
copies of Y and its bitwise negation G(Y ) arranged in a bigger copy of the Thue-Morse
sequence, which is cube-free; hence every sequence of three such copies contains a copy
of Y .

More concretely, Y is a block of size 2n. Note that if we divide the Thue-Morse sequence
into blocks of size 2 · 2n, by Pigeonhole, a consecutive sequence of 4 · 2n terms must
contain at least 1 of these blocks, running from k · 2n+1 to (k + 1)2n+1 − 1 for some
nonnegative integer k. Recalling the construction in 1(d) using the Lindenmeyer function
F , we note that the subsequence tk2n+1 . . . t(k+1)2n+1−1 comes from Fn+1(tk). But this
is Fn(F (tk)) = Fn(′01′ or ′10′), and Fn(0) = Y .)

Alternate solution: We use the binary representation in 1(b). Let n denote the number
of binary digits in b. We claim that any consecutive sequence of 8 ·2n terms tc . . . tc+2n+3

contains a copy of ta . . . tb. Indeed, let c′ := c rounded up to the nearest multiple of
2 · 2n; then tc′+a . . . tc′+b is a copy of the original sequence is c′ has an even number of
1’s in the binary expansion. If not, then c′ + 2n has an even number of 1’s, and hence
tc′+2n+a . . . tc′+2n+b works.

(d) We already essentially argued that {tn} is indeed a fixed point of this operation. To be
precise, the claim that T is a fixed point means that if f(T ) = s0s1 · · · , then ti = si
for all i. But we proved in problem 1 part d that f(t0 · · · t2n−1) = t0 · · · t2n+1−1, which
shows that ti = si for 0 ≤ i ≤ 2n−1. Since n is arbitrary, T is indeed a fixed point, and
so is its bitwise negation by the same proof.

To prove that there are no others, it suffices to note that if S is a fixed point which
begins with 0, then since S = f(S), also S = fn(S) (where fn means f composed with
itself n times), the first 2n terms of S must equal fn(0), which is just the first n terms
of the Thue-Morse sequence. Since n is arbitrary, S must be exactly {tn}. The same
argument for the bitwise negation of {tn} holds if S starts with 1.

(It is also possible to use 1(d) for the second part as well.)

Thue-Morse-igami

We now jump into an amusing geometric manifestation of the Thue-Morse sequence. We begin
with a long strip of paper which is black on one side and gray on the other. We fold it into four
parts as shown below. 1

Note that the colors on the tops of the layers, from top to bottom, show respectively black,
gray, gray, black. Let’s call this TMO-1 for Thue-Morse Origami 1.

Now suppose we press this flat, treat it as a single strip, and fold the same shape again, creating
a total of sixteen layers.

1Picture credits to Zachary Abel, http://blog.zacharyabel.com/2012/01/thue-morse-igami.
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If we list the colors on the tops of the layers from top to bottom, with G for gray and B for
black, we now get BGGBGBBGGBBGBGGB. Let’s call this TMO-2 for Thue-Morse Origami 2.

Of course, we can continue in this manner, folding TMO-n from TMO-(n − 1) by treating
TMO-(n− 1) as a single strip and performing a single four-part fold on it.

3. (a) [6] If we represent black by 0 and gray by 1, then the sequence of colors we described
above for TMO-1 looks like 0110, and the sequence we gave for TMO-2 looks like
0110100110010110. Notice that these are the first few terms of the Thue-Morse se-
quence. Prove that this pattern continues: if we take TMO-n, look at the tops of the
layers from top to bottom, and write a 0 when we see black and 1 when we see gray, we
will see the first 22n terms of the Thue-Morse sequence.

(b) Suppose we “unfold” TMO-1 by opening each crease into a 90-degree angle. The result
is shown below. The result for doing the same thing to TMO-2 and TMO-3 also shown.

Consider the shape obtained by opening each crease of TMO-n into a 90-degree angle,
oriented as in the above pictures. To start you off, we’ll confirm that, as you might guess
from the pictures above, it is approximately a square grid fitting snugly inside a triangle.

(i) [2] State (no justification needed) the side lengths of this triangle, assuming that
each layer of TMO-n is one unit.

(ii) [2] Describe (no justification needed) which “grid-segments” are present and which
are missing.

(Your answers to (i) and (ii) above should NOT go on the short-answer sheet.)

(c) [10] Prove that the shape obtained by opening each crease of TMO-n into a 90-degree
angle is indeed the one described in part (b).

Solution to Problem 3:

(a) We induct on n. The base cases have already been shown in the problem statement. Now,
start with the inductive hypothesis that the colors of TMO-n are the first 22n terms of the
Thue-Morse sequence. Note that when we fold the S shape described, the colors of the
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top and bottom fourths are in the same order as the original, and the colors of the middle
two segments are upside-down and inverted. Therefore, TMO-(n+1)’s colors should look
like t0 · · · t22n−1G(t22n−1 · · · t0)G(t22n−1 · · · t0)t0 · · · t22n−1, whereG is the bitwise negation
function. By Problem 2a, we know that t0 · · · t22n−1 is a palindrome, so this sequence
equals t0 · · · t22n−1G(t0 · · · t22n−1)G(t0 · · · t22n−1)t0 · · · t22n−1. We can now use definition
1 of the Thue-Morse Sequence to see that the first 22n+1 terms of this sequence, and
hence all the 22n+2 terms, are the first terms of the Thue-Morse Sequence.

(b) (i) 2n, 2n, 2n
√

2 (an isosceles right triangle of leg length 2n).

(ii) The “missing” grid-segments consist of every other segment on the left leg of the
triangle, starting from the bottom segment, as well as every other segment on the top
leg of the triangle, starting from the leftmost segment.

(c) We proceed by induction. The base case is shown in the given pictures and we can
quickly verify that the claims in part b are true. (Note that these claims imply in
particular where the two ends of the strip are. One is at the top end of the left leg,
pointing up—we will refer to this as end A—and the other is at the right end of the
top leg, pointing right—we will refer to this as end B. This will be important.) Suppose
that TMO-n unfolds in the given manner. Consider the first fold we make when we
fold TMO-(n + 1), that is, the shape TMO-1. We can see that folding TMO-(n + 1) is
the same procedure as folding TMO-1, then folding each layer of TMO-1 into a version
of TMO-n. Hence TMO-(n + 1) will unfold into four copies of the unfolded version of
TMO-n (which we already know is essentially an isosceles right triangle of side length
2n). Call the four copies TMO-n-1, TMO-n-2, TMO-n-3, TMO-n-4 going along the
length of TMO-1, starting from end A. Then for i = 2, 3, 4, end A of TMO-n-i is joined
to end B of TMO-n-(i − 1), and TMO-n-i is lined up along the ith segment of the
unfolded version of TMO-1. This both ensures that the four triangles of side length 2n

fill up a single triangle of side length 2n+1, and, by considering the parity of the missing
segments, that the internal segments of the grid in the triangle of side length 2n+1 will
be covered exactly once and the appropriate side segments will still be missing. So we
are done.

Greedy Galois Games

Time for some probability and game theory. Alice and Bob are in a duel where in each round (be-
ginning with round 0), one duelist fires a shot at the other, hitting them with a success probability
of p. The first person to fire a successful shot wins. They want to choose the shooter each round
in a way that’s fair—just switching back and forth after every shot wouldn’t be fair, since we can
see intuitively that whoever goes first is more likely to win. Also, they’re both terrible at aiming,
so p is very low, though positive. What do they do?

They come up with the following idea: Alice shoots first. Then, Bob shoots as many times as
is necessary for his win probability to meet or exceed that of Alice’s win probability so far. Then,
Alice starts shooting again, again taking as many turns as is necessary for her win probability to
meet or exceed that of Bob’s win probability. And so on (if at any point, they have the same
probability of winning, we let the person who was not shooting in the previous round shoot in the
next round).

For example, suppose p = 1/3. Alice shoots during round 0, after which her win probability is
1/3 and Bob’s win probability is 0. Bob shoots during round 1. For Bob to win during round 1,
Alice has to miss in round 0, which happens with probability 2/3, and Bob has to hit in round 1,
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which happens with probability 1/3. So after round 1, Bob’s win probability is (2/3)(1/3) = 2/9,
which is still less than Alice’s win probability of 1/3. Therefore, Bob shoots again in round 2. By
the same logic, his overall win probability after round 2 is (2/3)(1/3) + (2/3)(2/3)(1/3) = 10/27,
which is now higher than 1/3. So Alice gets to shoot in round 3. And so on.

Let P (A) be Alice’s overall win probability after a given round, and P (B) be Bob’s win prob-
ability. We summarize the above information in the following table:

Round # Shooter P (A) P (B)

0 Alice 1/3 0

1 Bob 1/3 2/9

2 Bob 1/3 10/27

3 Alice ? 10/27

4 ? ? ?

4. (a) (i.) [2] Fill in the question marks in the above table (no justification required).

(ii.) [3] Fill in the same table for p = 1/4 instead of 1/3 (no justification required).

(b) [6] Let q = 1− p. Let {an} be the sequence such that an = −1 if Alice shoots in round
n and an = 1 if Bob shoots in round n. Let P (An) be Alice’s overall win probability
after round n, and P (Bn) Bob’s overall win probability after round n. Finally, let

fn(x) = an

 n∑
j=0

ajx
j

 .

Prove that

an+1 =

{
−an if fn(q) ≥ 0,

an otherwise.

(c) [3] Prove that regardless of the value of p, we always have a0 = −1, a1 = 1, a2 = 1.

(d) [3] Determine, with proof, all values of p such that a3 = −1.

Solution to Problem 4:

(a) (i.)

Round # Shooter P (A) P (B)

0 Alice 1/3 0

1 Bob 1/3 2/9

2 Bob 1/3 10/27

3 Alice 35/81 10/27

4 Bob 35/81 106/243

(ii.)

Round # Shooter P (A) P (B)

0 Alice 1/4 0

1 Bob 1/4 3/16

2 Bob 1/4 21/64

3 Alice 91/256 21/64

4 Bob 91/256 417/1024
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(b) Note that

P (An) =
∑

j:aj=−1
pqj ,

since for each given round that Alice participates in, there is a probability qj of reaching
round j, and probability p that Alice wins in that round. Similarly,

P (Bn) =
∑

j:aj=1

pqj .

Hence, we can write

fn(q) =
an
p

(P (Bn)− P (An)) .

If fn(q) < 0, then either an < 0 and P (Bn) > P (An) or an > 0 and P (Bn) < P (An). In
either case, the person who just shot has a lower probability of winning, so they should
continue shooting, so an+1 = an. Otherwise, the person who just shot has a higher (or
equal) probability of winning, so the other person should start shooting, so an+1 = −an.

(c) Alice always shoots first, so a0 = −1 by default. P (A0) = p > P (B0) = 0, so Bob must
shoot in round 1, so a1 = 1. P (A1) = p > P (B1) = pq since q < 1, so Bob must shoot
again in round 2, so a2 = 1.

(d) Note P (A2) = p and P (B2) = p(q+q2). We have a3 = −1 if and only if P (A2) ≤ P (B2),

so we need q + q2 ≥ 1, which is true if and only if q ≥ −1+
√
5

2 since q > 0. Hence, we

require p ≤ 1− −1+
√
5

2 = 3−
√
5

2 .

Our goal is now to prove that as p gets close to 0, or equivalently as q gets close to 1, the
pattern of who shoots who becomes more and more like the Thue-Morse sequence, in the following
sense. Recall that we define an to be −1 if Alice shoots in round n and 1 if Bob shoots in round n,
and that {tn} is the Thue-Morse sequence. Let {t′n} be the sequence such that t′n = −1 if tn = 0
and t′n = 1 if tn = 1. That is, {t′n} is basically also the Thue-Morse sequence, just using −1 and 1
instead of 0 and 1, since that’s more convenient for our current application. We’re going to show
that as p gets close to 0, more and more of the first few terms of {an} equal the first few terms of
{t′n}.

5. (a) [8] Prove that for each n ∈ N, there is an ε > 0 such that the sequence a0, a1, . . . , an is
the same for all q ∈ (1 − ε, 1). Intuitively, this shows that as the success probability p
nears zero, more and more of the first few terms of an stabilize and become fixed. (Hint:
start with your solution to Problem 4).

(b) (i) [3] Prove that for any m, we have
∑2m+1

i=0 t′i = 0.

(ii) [7] Suppose that there exists ε > 0 such that for all q ∈ (1 − ε, 1), ai = t′i for
0 ≤ i ≤ 2m. Prove that then there is an ε′ > 0 such that a2m+1 = −a2m for all
q ∈ (1− ε′, 1).

(c) [6] Suppose that there exists ε > 0 such that for all q ∈ (1 − ε, 1), ai = t′i for 0 ≤ i ≤
2m+ 1. Prove that when q ∈ (1− ε, 1), f2m+1(q) = (q − 1)fm(q2).

(d) [6] Prove that for each n ∈ N, there is an ε > 0 such that the sequence a0, a1, . . . , an is
the same as the sequence t′0, t

′
1, . . . , t

′
n for all q ∈ (1− ε, 1). (This demonstrates the claim

we made in the paragraph before this problem.)

Solution to Problem 5:
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(a) We induct on n. The base cases n = 0, 1, 2, 3 were shown in Problem 4. Now assume for
some n ∈ N and ε > 0, we have that a0, . . . , an is the same sequence for all q ∈ (1− ε, 1).
We want to find ε′ > 0 such that a0, . . . , an+1 is the same sequence for all q ∈ (1− ε′, 1).
Recall from problem 4 that

an+1 =

{
−an if fn(q) ≥ 0,

an otherwise.

If the polynomial fn(q) does not have a zero in the interval (1 − ε, 1), then an+1 is the
same for all q ∈ (1− ε, 1), and so we simply can set ε′ = ε. Otherwise, let r denote the
largest number in the interval (1− ε, 1) such that fn(r) = 0. Then, an+1 is the same for
all q ∈ (r, 1), so we set ε′ = 1− r > 0.

(b) (i) We show that for any m, t′2m = −t′2m+1. The claimed identity follows trivially.
From the third definition of the Thue-Morse sequence, we have that t2m = tm and
t2m+1 = 1 − tm. Hence, t′m = 1 =⇒ t′2m = 1, t′2m+1 = −1 and t′m = −1 =⇒ t′2m =
−1, t′2m+1 = 1. Either way, t′2m = −t′2m+1.

(ii) Note that f2m(1) = a2m
∑2m

j=0 aj = a2m · a2m = 1, since
∑2m−1

j=0 aj =
∑2m−1

j=0 t′j = 0.
Let r be the largest number less than 1 such that f2m(r) = 0 (or −∞ if f2m(x) is always
positive for x < 1), and let ε′ = min(ε, 1 − r). Clearly ε′ > 0. Since 1 − ε′ ≥ 1 − ε, we
have that for all q ∈ (1− ε′, 1), ai = t′i for 0 ≤ i ≤ 2m. Moreover, for q in that interval,
f2m(q) ≥ 0, so a2m+1 = −a2m.

(c) We can rewrite

f2m+1(q) = a2m+1

m∑
i=0

(a2iq
2i + a2i+1q

2i+1) = a2m+1

m∑
i=0

(a2i + qa2i+1)q
2i,

by grouping the terms of f2m+1(x) into pairs. For q ∈ (1− ε, 1), this becomes

a2m+1

m∑
i=0

(t′2i + qt′2i+1)q
2i = a2m+1

m∑
i=0

(t′2i − qt′2i)q2i = a2m+1

m∑
i=0

t′2i(1− q)q2i.

Finally, definition 3 of the Thue-Morse sequence tells us that t′2i = t′i for all i, so this
equals

a2m+1(1− q)
m∑
i=0

t′iq
2i = (a2m+1/am)(1− q)am

m∑
i=0

t′iq
2i = (q − 1)fm(q2),

as desired.

(d) We induct on n. The base cases n = 0, 1, 2, 3 were shown in Problem 4. Now assume
that there exists some ε > 0 such that for all q ∈ (1 − ε, 1), ai = t′i for all 0 ≤ i ≤ n.
There are two cases. First, assume n is even, i.e. n = 2m for some integer m. By part
(b), we know that there exists ε′ such that an+1 = a2m+1 = −a2m for all q ∈ (1− ε′, 1).
Since t′2m+1 = −t2m, this exactly tells us that for all q ∈ (1 − ε′, 1), ai = t′i for all
0 ≤ i ≤ 2n+ 1, as desired.

Now consider the case when n is odd, i.e. n = 2m+ 1 for some integer m. Let ε′ = 1−√
1− ε. Note that 0 < ε′ < ε, since 1−ε′ =

√
1− ε > 1−ε, as squaring a positive number

less than one makes it smaller. For all q ∈ (1 − ε′, 1), we have that fm(q) and fm(q2)

9
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have the same sign, since q ∈ (1 − ε′, 1) = (
√

1− ε, 1) =⇒ q2 ∈ (1 − ε, 1), and so the
sequences {ai} for q and q2 are identical. Part (c) tells us that f2m+1(q) has the opposite
sign as fm(q2) and fm(q), since q−1 < 0. So, a2m+2 = a2m+1 if and only if am+1 = −am.
Definition 3 of the Thue-Morse sequence tells us that t′2m+1 = −t′m, and t′2m+2 = t′m+1.
Hence, if am+1 = −am, then a2m+2 = a2m+1 = t′2m+1 = −t′m = t′m+1 = t′2m+2; and
if am+1 = am, then a2m+2 = −a2m+1 = −t′2m+1 = t′m = t′m+1 = t′2m+2. Either way,
an+1 = a2m+2 = t′n+1 = t′2m+2, as desired.

Pattern avoidance

Now we develop and prove some more complicated but really cool properties of the Thue-Morse
sequence. The goal of the next problem is to prove that no string of consecutive terms in the
Thue-Morse sequence repeats itself three times consecutively. That is, the Thue-Morse sequence
contains no cubes, where a cube is a nonempty string of consecutive terms which looks like www,
where w is any string of 0s and 1s (for example, 001001001 is a cube with w = 001). As in some
previous problems, we will leave out the commas between terms for convenience.

6. (a) [3] Of course, the simplest cubes are 000 and 111. Prove directly that in the Thue-Morse
sequence, there are never three consecutive 0s or three consecutive 1s. (You may leave
this part blank and receive full credit for it, but only if you receive full credit on the
entire rest of this problem.)

(b) We define an overlapping factor to be a nonempty string x of consecutive terms which
begins with a string w of length shorter than x, and ends with the same string w, such
that the two occurrences of w overlap in at least one term. For example, x = 11011011
is an overlapping factor because it both begins and ends with w = 11011, and the two
instances of 11011 overlap by two terms (the middle two 1s).

(i.) [3] Prove that if a sequence contains a cube, then it also contains an overlapping
factor.

(ii.) [8] Prove that if a sequence contains an overlapping factor, then it also contains
an overlapping factor of the form avava, where a is a single term and v is a (possibly
empty) string of terms.

(c) [5] Suppose that x = a0a1 · · · a2n−1 where each ai is either 0 or 1 and each string
a2ia2i+1 is either 01 or 10. Prove that it is not possible to write 0x0 or 1x1 in the form
b0b1 · · · b2n+1 where each bj is either 0 or 1 and each string b2ib2i+1 is either 01 or 10.

(d) Given a string T of 0s and 1s, let f(T ) be the function from problem 2, part d—that is,
the string created by simultaneously replacing each 0 by a 01 and each 1 by a 10.

(i.) [6] Suppose f(T ) = xavavay where a is a single term (0 or 1) and x, v, y are strings
of 0s and 1s. Prove that v consists of an odd number of terms.

(ii.) [7] Prove that if f(T ) contains an overlapping factor, then T also contains an
overlapping factor.

(iii.) [3] Prove that the Thue-Morse sequence contains no overlapping factors, and
therefore no cubes.

Solution to Problem 6:

(a) We use the definition of the Thue-Morse sequence given in Problem 1, part d. We start
with 0 and generate the sequence using the following replacement rule: 0→ 01, 1→ 10.
Notice that every 0 is adjacent to at least one 1, and every 1 is adjacent to at least one
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0. This means that such simple cubes as 111 and 000 cannot appear in the sequence
because they would require the middle 1 (or 0) to be without an adjacent 0 (or 1). We
conclude that the Thue-Morse sequence does not contain three consecutive 0s or 1s.

(Note: there are many other ways to argue this. We can make the same conclusion from
1(b), or by induction from 1(a).)

(b) (i) If the sequence contains a cube, then there exists a string w such that www appears
in the sequence. We can define the nonempty string x to be x = ww. We see that x
must be an overlapping factor of the sequence, because the string www contains two
instances of ww that overlap exactly in w. Thus, the presence of a cube implies the
presence of an overlapping factor.

(ii) Let x be our overlapping factor containing two overlapping instances of w. Let n be
the length of w, and let the overlap between w and itself start after the first k characters
of x (i.e. x has length n+ k). Finally, let xi denote the i-th character of x.

Note that xi = xk+i for all i = 1, 2, . . . , n, since x contains w overlapping itself shifted by
k characters. In particular, x1 = xk+1 = x2k+1, and the substring of x2x3 · · ·xk equals
xk+2xk+3 · · ·x2k. So, we set a = x1 and v = x2x3 · · ·xk.

(c) Note that if a string can be written where each string b2ib2i+1 is either 01 or 10, then
it contains equal numbers of 0’s and 1’s. x fits this criterion, and therefore contains
exactly n 0’s and n 1’s. Therefore, 0x0 and 1x1 both have different numbers of 0’s and
1’s, so they cannot be written in the desired form.

(Note: there are other ways to argue this, e.g. by induction on the length of the sequence,
or directly from writing b0 · · · b2n+1 = 0a0 · · · a2n−10 and concluding b0 = 0, b1 = 1 =
a0, a1 = 0 = b2, etc., up to b2n+1 = 1.)

(d) (i) First we note that f(T ) is even, since it has twice the length of T . Since avava must
have odd length, exactly one of x and y must have even length. We thus have two cases:

• Case 1: The length of x is odd and y is even, so xa, vava, y consist of 10s and 01s.

• Case 2: The length of y is even and x is odd, so x, avav, ay consist of 10s and 01s.

Now, assume that v has even length. Then, the length of ava must be even as well. In
each of the cases above, v and ava can both be written as consecutive 10 and 01 terms.
This stands in contradiction of the statement we proved in (c). Thus, we conclude that
v must have odd length.

(Alternatively, vava or avav consisting of 10s and 01s implies that vava or avav has
equal numbers of zeros and ones, hence that va or av has equal numbers of zeros and
ones, hence that va or av is of even length, hence that v is of odd length.)

(ii) In part (b), we showed that if f(T ) has an overlapping factor, then it has an over-
lapping factor of the form avava, so that we can write f(T ) = xavavay. Since v has odd
length, we know that either va or av can be written as 10s and 01s. These correspond
to the above two cases in part (i).

• Case 1: We can write T = rsst such that f(r) = xa, f(s) = va, f(t) = y. Thus, since
the strings r and s end with the same letter ā, we can write them as r = r′ā, s = s′ā.
Thus, T = r′ās′ās′āt contains an overlapping factor of the form w = ās′ā.

• Case 2: We can write T = rsst such that f(r) = x, f(s) = av, f(t) = ay. Since
the strings s and t start with the same letter a, we have s = ās′, t = āt′. Thus,
T = rās′ās′āt′ contains the overlapping factor w = ās′ā.
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We’ve shown that if f(T ) contains an overlapping factor, then T also contains an over-
lapping factor, completing our proof.

(iii) We proceed by induction. First, we define the Thue-Morse sequence as the result of
repeated operations of f(T ), starting with T0 = 0 (as in problem 1, part d). T0 contains
no overlapping factors. Now, for the induction hypothesis, assume that after n − 1
iterations of f(T ), the sequence Tn−1 has no overlapping factors. By the contrapositive
of part (ii), f(Tn−1) = Tn also has no overlapping factors. Hence, by induction we have
that the Thue-Morse sequence as a whole has no overlapping factors. Finally, we showed
in (b) that the presence of a cube in a sequence implies the presence of an overlapping
factor, so the Thue-Morse sequence cannot contain any cubes either.

We just saw that the Thue-Morse sequence contains no cubes. However, it obviously does
contain many, many squares—where a square is a nonempty string of consecutive terms which
looks like ww. Can we use the Thue-Morse sequence to construct a sequence which contains no
squares?

7. (a) [4] Find all (finite nonempty) sequences of 0s and 1s which contain no squares, and prove
that there are no others.

(b) [5] From part a, we can see that it is impossible to build an infinite sequence which
contains no squares using only two distinct terms. What if we instead have three distinct
terms 0, 1, 2? Let A be the set of (finite or infinite) sequences consisting of 0s, 1s, and
2s. Let B be the set of (finite or infinite) sequences consisting of 0s and 1s. Let G be a
function from A to B defined as follows. If S is a sequence in A, G(S) is the sequence
created by simultaneously replacing each 0 with a 0, each 1 with a 01, and each 2 with
a 011. For example, if S = 01212, then G(S) = 00101101011.

Prove that if T is a sequence in B with no overlapping factors and starts with 0, then
there is a unique sequence S in A such that G(S) = T .

(c) Let T be the Thue-Morse sequence. Let S be the unique infinite sequence in A such
that G(S) = T , as constructed in part b.

(i) [2] Compute the first fifteen terms of S.

(ii) [6] Prove that S contains no squares (that is, nonempty strings of consecutive terms
which look like ww, where w is a string of 0s, 1s, and 2s).

(d) [8] Let U = u0u1u2 . . . be the sequence defined by ui = t2i+1 + t2i+2. So u0 = t1 + t2 =
1 + 1 = 2, u1 = t3 + t4 = 0 + 1 = 1, u2 = t5 + t6 = 0 + 0 = 0, and so on. Prove that U is
the same as the sequence S from part c.

Solution to Problem 7:

(a) We claim the only “square-free” sequences of 1s and 0s are: 0, 1, 01, 10, 010, 101. In
such a sequence, each 1 must be followed by a 0 (and every 0 a 1), since repetition of
a digit would lead to a square term of the form ww. Thus, square-free sequences must
alternate. We also note that alternating sequences are no longer square-free after a few
digits; for example w = 10 is repeated twice in 1010. The conclusion is that square-free
sequences are alternating, and must have length less than or equal to 3, which leads to
the answers listed above.

(b) The trick here is to show that, given a sequence in B, we can find its unique preimage, S,
in A. The fact that T has no overlapping factors means that it is cube-free, by problem
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6. Thus, we can always group every 0 in T with all the consecutive 1s that immediately
follow it, since there will be at most two 1s. We find S from T by replacing each 0 with
0, 01 with 1, and 011 with 2. Using this method, we obtain the unique sequence S such
that G(S) = T .

(c) (i) 210201210120210

(ii) We proceed by contradiction. Assume that S contains a square ww, and let d denote
the next number that comes after an occurrence of ww (i.e. S = uwwdx for some strings
u, x). Thus, G(wwd) is contained in G(S) = T . We let v, y be strings such that G(w) =
av,G(d) = ay, where a = 0. Then G(wwd) = G(w)G(w)G(d) = avavay is contained in
T , so that T has an overlapping factor. This contradicts our earlier assumption that S
had a square. Thus, using the Thue-Morse sequence, we’ve constructed the square-free
sequence S using three distinct terms.

(d) Call a sequence of consecutive terms 0, 01, or 011 in the Thue-Morse sequence a phrase
if it comes from the image of a term in S. So the first few phrases in T are 011, 01, 0, 011,
and so on. We claim that for each pair of consecutive terms (t2i+1, t2i+2) in the Thue-
Morse sequence, the term in S corresponding to the preimage under G of the phrase
containing t2i+1 is ui = t2i+1 + t2i+2. We proceed as follows. If t2i+1 + t2i+2 = 2, then
t2i+1 = t2i+2 = 1. Since T is cube-free, t2i = 0. Hence the phrase containing t2i+1 is
t2it2i+1t2i+2 = 011 with preimage 2. If t2i+1 + t2i+2 = 1, then (t2i+1, t2i+2) = (0, 1) or
(1, 0). In the former case, since the pairs (t2j , t2j+1) are always (1, 0) or (0, 1) by problem
1 part (d), we must have t2i+3 = 0, so the phrase containing t2i+1 is t2i+1t2i+2 = 01 with
preimage 1. In the latter case, we must have t2i = 0, so the phrase containing t2i+1 is
t2it2i+1 = 01 with preimage 1. Finally, if t2i+1 + t2i+2 = 0, then t2i+1 = t2i+2 = 0, so the
phrase containing t2i+1 is just t2i+1 = 0 with preimage 0.

It is clear from this analysis that each term t2i+1 corresponds to a unique phrase of T
(because none of the phrases constructed contain multiple odd-indexed terms of T ), or
a unique term of S, which is to say that U is a subsequence of S. The last thing we need
to check is that S has no “extra” terms, that is, T has no phrases containing none of the
terms t2i+1, that is, T has no phrases of the form t2i+2 = 0. But this is clear because if
t2i+2 = 0 then t2i+3 = 1, so the phrase containing t2i+2 is either 01 or 011. So we are
done.

Miscellaneous

Just for fun, here are a few more cute and unexpected things you can do with the Thue-Morse
sequence.

8. (a) The Koch snowflake is a well-known fractal that is constructed over iterations as follows.
Our initial “snowflake”, the zeroth iteration, is just a straight line segment.

In the first iteration, we take the middle third of the line segment, draw an equilateral
triangle using that middle third as a base, and then erase the middle third, resulting in
the following figure.
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In the second iteration, we take every line segment in the above figure and repeat the
same procedure: replacing the middle third of the line segment with the other two sides
of the outward-facing equilateral triangle that has that middle third as a base.

In general, we create the nth iteration of the Koch snowflake by taking each line segment
in the (n − 1)th iteration and replacing the middle third by a “corner” in the shape of
an equilateral triangle, in the same way as before.

(i) [2] Draw (no justification required) the third iteration of the Koch snowflake.

(ii) [7] A turtle reads the Thue-Morse sequence t0, t1, . . . and decides to crawl according
to the sequence, as follows. At the nth step, if tn = 0, it will crawl forward one unit
and then turn 60 degrees to the left. If instead tn = 1, it will turn 180 degrees (without
moving). Prove that after 22n+1 steps (that is, after following the sequence from t0, t1, . . .
up to t22n+1−1), the turtle will have traced out the nth iteration of the Koch snowflake.
(Of course, we are ignoring the scale of the resulting snowflake here; we are only interested
in its shape.)

(b) [9] Let N = 2n+1. Let AN be the set of integers i in {0, 1, . . . , N − 1} such that ti = 0,
and let BN be the set of integers j in {0, 1, . . . , N − 1} such that tj = 1. Prove that∑

i∈AN

ik =
∑
j∈BN

jk

for all integers k from 1 to n. (This is a special case of the Prouhet-Tarry-Escott problem.)

(c) [11] As in the discussion after Problem 4, let {t′n} be the Thue-Morse sequence using
−1, 1 instead of 0, 1. Prove that(

1

2

)t′0
(

3

4

)t′1
(

5

6

)t′2
· · · =

∞∏
n=0

(
2n+ 1

2n+ 2

)t′n

=
√

2.

Solution to Problem 8:

(a) (i)

(ii) We proceed by induction. The base case n = 0 is clear. Suppose that the turtle
following the finite sequence Tn = t0 · · · t22n+1−1 traces out the nth iteration of the Koch
snowflake. Recall from Problem 1, part d, that t2it2i+1 is always either 01 or 10, and that
the sequence Ta = t0t1 · · · t2a−1 is generated from the sequence Ta−1 = t0t1 · · · t2a−1−1
by simultaneously replacing each 0 with a 01 and each 1 with a 10. Then Tn+1 =
t0t1 · · · t22n+3−1 is obtained from Tn by two iterations of this process.

Hence each pair t2it2i+1 of consecutive instructions in Tn is replaced by eight consecutive
instructions in Tn+1 as follows: the pair 01 (step, turn 120◦ to the right) is replaced by
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01101001 (step, turn 60◦ to the left, step, turn 120◦ to the right, step, turn 60◦ to the
left, step, turn 120◦ to the right) and the pair 10 (turn 180◦, step, turn 60◦ to the left) is
replaced by 10010110 (turn 180◦, step, turn 60◦ to the left, step, turn 120◦ to the right,
step, turn 60◦ to the left, step, turn 60◦ to the left).

This replacement does not affect the orientation of this section of the path with respect
to the rest of the path, since the turtle is oriented the same way at the beginning and
the end, but it turns a single step—a single straight segment—into a sequence of four
segments in the middle-third-replaced-by-corner shape. That is, the path the turtle
traces following Tn+1 is the same as the path the turtle traces following Tn, except that
each segment in Tn is replaced by a sequence of four segments in the form of the Koch
iteration. Since this is exactly how we get the (n+ 1)th iteration of the Koch snowflake
from the nth iteration, this completes the induction.

(Note: an alternative solution is to induct by treating the (n+1)th iteration as a sequence
of four copies of the nth iteration. In this case, one may check using the definition from
Problem 1, part a that Tn+1 also splits into four segments which produce four copies of
the result of tracing Tn and join appropriately.)

(b) As in the discussion after Problem 4, let {t′i} be the Thue-Morse sequence using −1, 1
instead of 0, 1. Then we wish to prove that

N−1∑
i=0

t′ii
k = 0

for all integers k from 1 to n. In fact, this is also true for k = 0, as shown in Problem 5,
part b(i). We proceed by induction on n. The base case n = 1 is easy to check. Suppose
the desired identity is true for n− 1 (so N = 2n, k = 1, . . . , n− 1). Then for N = 2n+1

and any k ∈ {1, 2, . . . , n} we compute

N−1∑
i=0

t′ii
k =

2n−1∑
i=0

(t′ii
k + t′i+2n(i+ 2n)k) =

2n−1∑
i=0

(t′ii
k − t′i(i+ 2n)k)

since t′i+2n = −t′i for i = 0, 1, . . . , 2n − 1 by our first definition of the Thue-Morse
sequence, and this is

2n−1∑
i=0

t′i(i
k−(i+2n)k) =

2n−1∑
i=0

t′i(i−(i+2n))(ik−1+ik−2(i+2n)+· · ·+i(i+2n)k−2+(i+2n)k−1)

= −2n
2n−1∑
i=0

t′iPn,k(i)

where Pn,k(x) = xk−1 + xk−2(x+ 2n) + · · ·+ x(x+ 2n)k−2 + (x+ 2n)k−1 is a polynomial
of degree k− 1. Write Pn,k(x) = ak−1x

k−1 + ak−2x
k−2 + · · ·+ a1x+ a0. Then the above

summation is

2n−1∑
i=0

t′i(ak−1i
k−1 + ak−2i

k−2 + · · ·+ a1i+ a0) = ak−1

2n−1∑
i=0

t′ii
k−1 + · · ·+ a0

2n−1∑
i=0

t′i = 0

by the inductive hypothesis together with the known case k = 0. This completes the
induction.
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(c) Write

P =
∞∏
n=0

(
2n+ 1

2n+ 2

)t′n

and

Q =
∞∏
n=1

(
2n

2n+ 1

)t′n

.

Ignoring convergence issues which we will address later, we compute

PQ = 2

∞∏
n=1

(
n

n+ 1

)t′n

= 2

∞∏
k=1

(
2k

2k + 1

)t′2k ∞∏
k=0

(
2k + 1

2k + 2

)t′2k+1

= 2
∞∏
k=1

(
2k

2k + 1

)t′k ∞∏
k=0

(
2k + 1

2k + 2

)−t′k
= 2 · Q

P
.

Cancelling Q and solving for P gives P 2 = 2, or P =
√

2.

To make sure these manipulations are legitimate, we claim that if we rewrite P in the
form

P =
∞∏
k=0

(
4k + 1

4k + 2

)t′2k
(

4k + 3

4k + 4

)t′2k+1

=
∞∏
k=0

(
(4k + 1)(4k + 4)

(4k + 2)(4k + 3)

)t′2k

then this two-by-two product is absolutely convergent. This is just because

(4k + 1)(4k + 4)

(4k + 2)(4k + 3)
=

16k2 + 20k + 4

16k2 + 20k + 6
= 1− 2

16k2 + 20k + 6
= 1− 1

8k2 + 10k + 3
,

and similarly
(4k + 2)(4k + 3)

(4k + 1)(4k + 4)
= 1 +

1

8k2 + 10k + 2
.

By expanding the product, it can be shown that

∞∏
k=0

(
1± 1

8k2 + 10k + 5/2∓ 1/2

)
is absolutely convergent if and only if

∞∑
k=0

(
± 1

8k2 + 10k + 5/2∓ 1/2

)
is absolutely convergent. We can see that this sum is indeed absolutely convergent,
since

∑∞
n=1

1
n2 is absolutely convergent. Essentially the same argument gives that Q is

absolutely convergent upon being written as a product of pairs of consecutive terms as
well. Since the manipulations we performed above can also be written as rearrangements
of pairs of consecutive terms, this is acceptable.

16


