SMT 2014 ALGEBRA TEST SOLUTIONS FEBRUARY 15, 2014

1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish
painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished,
then the house takes 30 hours to finish. Given that Alice and Bob paint at a constant rate,
compute how many hours it will take for Bob to paint the entire house if he does it by himself.

Answer: 40

Solution: In 10 hours, Alice and Bob paint half the house. Therefore, Alice can paint half the

house in 20 hours. This means Alice painted a quarter of the house in 10 hours, which means

Bob paints a quarter of the house in 10 hours, so Bob takes hours to paint the entire house.
2. Compute 9 +6-9°+15-91+20-93+15-9% +6- 9.

Answer: 999999

Solution: From the Binomial Theorem, this is just (9 + 1)6 — 1 ={999999 |

3. Let 1 and z be the roots of 2> — z — 2014, with =1 < x2. Let x5 and x4 be the roots of
x? — 2z — 2014, with 23 < z4. Compute (x4 — x2) + (23 — 21).

Answer: 1
Solution: Note that 3 + x4 = 2 and x1 4+ 2 = 1, giving an answer of .
4. For any 4-tuple (a1, as, as, as) where each entry is either 0 or 1, call it quadratically satisfiable if

there exist real numbers z1, ..., x4 such that xlxi 4+xox4+x3 =0and foreachi=1,...,4, z; is
positive if a; = 1 and negative if a; = 0. Find the number of quadratically satisfiable 4-tuples.

Answer: 12

Solution: First, we may assume a; = 1 without loss of generality and multiply our answer by
2 at the end, since az? + bz 4+ ¢ =0 < —ax? — bz — ¢ = 0. We can furthermore assume z; = 1,
since we can always divide the whole equation by z1 (since z1 > 0).

Hence, we now consider equations of the form x3 + bz + ¢ = 0 in which b and ¢ are constrained
to be either positive or negative. This yields four cases:

Case 1: If b and ¢ are both positive, the two roots have positive product but negative sum,
so they must both be negative i.e. z4 < 0. Furthermore, x4 < 0 is possible, e.g.
T3 +214+1=0 = z4=—1.

Case 2: If b is positive and c is negative, x4 may be positive or negative e.g. x2 + x4 —2 =—
T4 € {—2, 1}.

Case 3: If b is negative and c is positive, the two roots have positive product and positive
sum, so they must both be positive i.e. x4 > 0. Furthermore, 4 > 0 is possible e.g.
wi—2w4+1 = x4 = 1.

Case 4: If b and c are both negative, r4 may be positive or negative e.g. 3 — 24 —2 = x4 €
{-1,2}.
Putting these cases together, we conclude that the answer is .
5. a and b are nonnegative real numbers such that sin(az + b) = sin(29z) for all integers z. Find
the smallest possible value of a.

Answer: 107 — 29.



SMT 2014 ALGEBRA TEST SOLUTIONS FEBRUARY 15, 2014

Solution: First, since sin(b) = sin(0) = 0, we have b = nm for some integer n. Since sin has
period 27, we need only consider the cases when b =0 and b = 7.

Now let b € {0,7} and a be any real number. If for all integers x, sin(ax + b) = sin(29z), then
for any integer n,

sin((a + 27n)x + b) = sin(ax + b 4+ 27nx) = sin(ax + b) = sin(29x)
for all integers = as well. Conversely, assume for some a and ¢ that for all integers x, sin(ax+b) =
sin(cz + b) = sin(29z). Then, for all integers z,
sin(ax) cos(b) + cos(ax) sin(b)
cos(b)

sin(ax) =

sin(azx + b)
cos(b)
sin(cz + b)
cos(b)
_ sin(cx) cos(b) + cos(cx) sin(b) _ sin(ca)
cos(b) ’

since sin(0) = sin(mw) = 0 and cos(0), cos(m) # 0. But then, sin(a) = sin(c) and 2sin(a) cos(a) =

sin(2a) = sin(2¢) = 2sin(c) cos(c) implies cos(a) = cos(c) since sin(a) = sin(c) = 5225(25)) # 0.
Hence, a and ¢ are the same angle, modulo integer multiples of 27.
Now, we consider the two cases concretely. If b = 0, one valid assignment of a is a = 29, so all

possible ones are a = 29 + 27n for integers n. The smallest positive number we can make this
is 29 — 8, since 107 ~ 31.4 > 29.

Meanwhile, if b = 7, one valid assignment of a is a = —29, since sin(—29x+7) = sin(—29z) cos()
+ cos(—29z) sin(m) = —sin(—29z) = sin(29z). So, all possible ones are a = —29 + 27n for
integers n. The smallest positive number we can make this is | 10m — 29 | We can easily see that
29 € (97, 107), so 10m — 29 < w < 29 — 8.
6. Find the minimum value of 1 ) )
+ +
T—y yYy—z T—2

for reals x > y > z given (z — y)(y — 2)(z — 2) = 17.

. _5
Answer: o8
Solution: Let x —y = a and y — z = b. Therefore, xt — z = a + b.
1 1 1 b 1
Note that p + 5 + PR 4. (a4jz_b ) + P Applying AM-GM here on these five fractions,

b 3
this quantity is greater than or equal to 5\5/ (;5;_ 41)) <. Note that because ab(a + b) = 17, this
a

s/ (a+b)7

256 - 174
implies that we want a = b because that is when the inequality is tight.

is equivalent to minimizing , which means that we want to minimize a + b, which

b)3 b)?
We therefore have that 17 = ab(a + b) < (a—z) because la+b)” > ab by AM-GM. Note that

4
S . C 3 /68 .
we have equality if and only if @ = b, which implies that a+b = v/68,s0a =b = — Plugging

5
/68 |

this in gives us
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7. Compute the smallest value p such that, for all ¢ > p, the polynomial 23 + 2% + gz + 9 has
exactly one real root.

39
Answer: ——
4

Solution:
Let f(x) = 2% + 22 + pz + 9. Then f(x) must have a negative root a and a double root b. By
viete’s, we have the following equations:
ab®> = -9
a+2b=—

3
This gives the cubic (2b + 1)b? = 9 = 2b> + b2 — 9 = 0. This equation yields b = 5 8 the only

real solution, so a = —4 and p = —% .

8. P(x) and Q(z) are two polynomials such that
P(P(x)) = P(2)' + 2% + Q(x).

Find the smallest possible degree of Q).
Answer: 35

Solution: Note: we use the notation O(x™) to denote an arbitrary polynomial whose degree is
at most n.

We first try to find a @ with degree < 48. It turns out this is feasible. Let d be the degree of
P. P(P(x)) has degree d?, and P(z)'¢ + 2% + Q(x) has degree max(16d,48). Since 48 is not a
perfect square, the degree must be 16d, which implies d = 16.

Now let R(z) = P(z) — x'%, so
R(P(z)) = 2™ + Q(x).

Since R applied to a degree-16 polynomial yields a degree-48 polynomial, the degree of R must
be 3. So, we have P(z) = 2% + ax® + O(2?) for some a # 0; we can also show from here that
in fact a = 1. Therefore,

P(P(z)) = P(x)'% + P(z)® + O(P(2)?) = P(2)' + 2™ + 323 + 0(2").
Hence, if the degree of () is < 48, it must be exactly .

9. Let b, be defined by the formula

n—\/ 1+a1\/ 1+a2\/ 1+4. J-1+a,

where a,, = n? + 3n + 3. Find the smallest real number L such that b, < L for all n.

Answer: 3

Solution: One way of solving this problem is by noticing the identity
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n+2=3Yn+2P3+1-1=Y-1+n+2P3+1=Y-1+(n+22—-(n+2)+1)(n+3) =

=Y/~ 1+ M2 +3n+3)(n+3)=/—1+an(n+3)

It is quite easy to see that n + &k +2 = ¢/—1+ auix(n + k + 3), so the formula may be applied
recursively to obtain the result

3 3 3 3
3=\/-14+a1\/-14+as\/—1+...+ar_1v/—1+ar(k+3)

for arbitrary k > 1. Then for all n > 1,

§/—1+a1§”/—1+... =1+ an < </—1+a1<’/—1+...+ V=14 an(n+3)=3

This gives a pretty good candidate for L.

Next, it is pretty clear that b, is an increasing (just by checking what happens in the innermost
radicals), and the upper bound of 3 implies that b, approaches some number < 3 for large n-
essentially, this is intuitive justification for the existence of L. This also motivates checking if
L = 3 or not by the following way:

Define b, (k) as the same formula for b, with n roots, but instead of starting at aj, it starts at
ng. Using computations very similar to those above, we may determine that, more generally,

bn(k) < k+2
and that by, (k) increases as n increases for any fixed k. Next, define

(k) =k +2 — by (k).

If ¢, (k) gets arbitrarily close to 0, then L cannot be less than 3, which would prove that L = 3.
We compute

— _ 3 - (k+2)3+1—agby— 1(k+1)
cnk)=k+2—by(k)=k+2— Y14+ apby_1(k+1) = 122 5 (k22 (h) + b ()2

(k3 ((k+2)? = (k+2)+1) —apboa(k+1)  ap((k+3) = by 1(k+1>)

N (k+2)2+ (k+2)bu(k) + by (k)? N (k:+2) + (k + 2)by (k) + by (k)2

B akcn—1(k + 1) < axcp—1(k + 1)
(k+2)2+ (E+2)by(k) +bp(k)2  (k+2)2+(k+2)+1

_apcp-1(k+1)  ay

k2457 aps

Cn—1 (ki + 1)
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10.

I used the fact that b, (k) > 1 which is true because aj, > 2 for k > 1, and by replacing all the a;
with 2 in the expression for b, (k) you get simply 1. Applying this inequality repeatedly, we get

ca(k) < ak ak+1___an+k—2cl(n+k_1): ak ci(n+k—1)
Af+1 Q42 An4k—1 An4k—1
ak (K2 +3k+3)(n+k+1—¥—T+anik1)
= k+1—b k—1)) =
g R L= bi(n k- 1)) it k—1213(mtk_1)13

1R +3k+3) A+ k/n+1/n— Y/ =1/0° + anyp_1/n?)
n (14+k/n—1/n)2+3(1/n+k/n?—1/n2)+3/n?

From this expression it is clear that, for any fixed k, for very large n ¢, (k) will get arbitrarily
close to 0. The fraction multiplied by the % has denominator approaching 1 and numerator
approaching k% + 3k + 3, as n becomes very large, because k/n — 0, 1/n — 0 and a,x_1/n3 =
(n+k—1)2+(n+k—1)+1)/n® — 0. So for large n, we may approximate the expression with

1
g-(k2+3k+3)—>0.

Thus, b, (k) can get arbitrary close to k + 2 but never reach it, and the case k = 1 gives us the
result that L = .

Let zg=1,21 =0, and z; = —3z;_1+x;_o fort > 2. Let yg =0,y1 =1, and y; = —3y;_1 + ¥;_2

for ¢ > 2. Compute
2013 2
Z (Y2014 — YiT2014)

2
=0 Y2014

You may give your answer in terms of at most ten values of the x; and/or y; (but must otherwise
simplify completely).

Answer: 2Y2014—%2014 _ _ Y2015
: 3y2014 3y2014
Solution 1: Let a = —x2014/y2014-

We first show that x; + ay; > 0 for all 7. Solving the linear recurrences gives

(~1)i(=3+ V/13) <3+\/ﬁ>i+ 3+V13 (—3+\/ﬁ>i

xTi =
’ 213 2 213 2
() 3+ VI3 1+ 1 (—3+vi3)
RV v NGE! 2 |
By cross-multiplying and cancelling terms, we conclude that
—3+/13 ,
Ti o3 _ (=34 V13)*

. - 1) : )
v Jm VB (-SEG+ VI + (-3 + VI)Y)

Since —3 + V13 < —3 + v/16 = 1 and the denominator is Qiym/ﬁ, this number decreases
monotonically in magnitude as ¢ increases and alternates in sign. That is, as i increases, x;/y;
gets monotonically closer to (3 — 1/13)/2 while alternating between being slightly above and
slightly below. This means that —z2;11/y2i+1 < a < —x2;/y2; for all ¢ < 1006, as desired.
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Hence consider the sequence of rectangles Ry, R1, ..., Roo13, where Ro; has height xo; + ays; and
width 3(332@‘ +ay2i) and Rg;41 has height 3(3;2i+1 +ay2i+1) and width x9; 41+ ay2;+1. Draw R4
adjacent to Rg; to the right with bottom edges aligned, and Ro; 12 adjacent to Re;11 above with
left edges aligned. Then the entire drawing exactly forms a rectangle of height 1 and width 3+a,
hence area 3 + a. On the other hand the area of the rectangle is clearly 3 times the area of the

) 3Y2014 — T2014
desired sum. Therefore the sum has value 3‘%“ = y3— .
Y2014

Solution 2: Solving the linear recurrences, plugging in, and expanding results in a sum of a
few geometric series. It should be possible to bash through this to get the same answer.



