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Time limit: 90 minutes.
Maximum score: 200 points.
Instructions: For this test, you work in teams of eight to solve a multi-part, proof-oriented
question.

Problems that use the words “compute” or “list” only call for an answer; no explanation or
proof is needed. Answers for these problems, unless otherwise stated, should go on the provided
answer sheet. Unless otherwise stated, all other questions require explanation or proof. Answers for
these problems should be written on sheets of scratch paper, clearly labeled, with every problem on
its own sheet. If you have multiple pages for a problem, number them and write the total number
of pages for the problem (e.g. 1/2, 2/2).

Place a team ID sticker on every submitted page. If you do not have your stickers, you should
write your team ID number clearly on each sheet. Only submit one set of solutions for the team.
Do not turn in any scratch work. After the test, put the sheets you want graded into your packet.
If you do not have your packet, ensure your sheets are labeled extremely clearly and stack the loose
sheets neatly.
No calculators.
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Introduction

This Power Round is an exploration of numerical semigroups, mathematical structures which ap-
pear very naturally out of answers to simple questions. For example, suppose McDonald’s sells
Chicken McNuggets in boxes containing a, b, or c McNuggets; can you say which exact quantities
of McNuggets you can and cannot buy? The same problem is also often stated in terms of stamps
or coins of certain values.

You can imagine that solutions to this problem must have numerous practical applications.
What is more surprising is that it also has some interesting applications to more advanced, very
abstract mathematics. We won’t be able to discuss that here, but be aware, as you work through
these elementary tricks and techniques for understanding numerical semigroups, that the same
tricks and techniques are being used at the cutting edge of research!

Remark: Given sets A and B, we will use the notations A−B and A \B interchangeably to
refer to the set of elements of A which are not also elements of B.

Defining numerical semigroups

We will develop two different definitions of numerical semigroups, each of which has its intuitive
advantages, and prove that they are in fact the same. We will use N0 to refer to the set of
nonnegative integers 0, 1, 2, . . . .

Here is our first definition: let a1, . . . , an be a set of positive integers (n ≥ 2) such that
gcd(a1, . . . , an) = 1. The numerical semigroup generated by a1, . . . , an is the set {c1a1 + · · ·+ cnan |
c1, . . . , cn ∈ N0}, which we sometimes refer to as 〈a1, . . . , an〉. For example, 〈4, 6, 9〉 is the set
{0, 4, 6, 8, 9, 10, 12, 13, . . . }, which contains the listed numbers along with all integers after 12.

1. (a) [6] (i) Compute all elements of the numerical semigroup 〈5, 7, 11, 16〉.
(ii) Can this numerical semigroup be generated by a set of fewer than 4 integers? Prove
your answer.

(iii) Compute all elements of the numerical semigroup 〈3, 7, 8〉.
(iv) Can this numerical semigroup can be generated by a set of fewer than 3 integers?
Prove your answer.

(b) [4] Prove that 〈a1, . . . , an〉 is “closed under addition”—that is, if x, y ∈ 〈a1, . . . , an〉, then
x+ y ∈ 〈a1, . . . , an〉.

(c) [8] Prove that 〈a1, . . . , an〉 contains all but a finite number of the nonnegative integers.
(Hint: you may use without proof the fact that if gcd(a1, . . . , an) = 1, then there exist
possibly negative integers d1, . . . , dn such that d1a1 + · · ·+ dnan = 1.)

Here is our second definition: a numerical semigroup is any set S ⊆ N0 which satisfies all of
the following three properties: (i) S contains 0, (ii) S is “closed under addition”—that is, for any
x, y ∈ S, we have x+y ∈ S, and (iii) S contains all but a finite number of the nonnegative integers.
In Problem 1, you showed that 〈a1, . . . , an〉 is indeed a numerical semigroup by this definition.

2. (a) [8] Prove that any numerical semigroup S, by this definition, is “generated by” a finite
set {a1, . . . , an}—that is, it can be written in the form 〈a1, . . . , an〉 = {c1a1 + · · ·+ cnan |
c1, . . . , cn ∈ N0} where a1, . . . , an are positive integers with gcd(a1, . . . , an) = 1.

(b) [8] We say that {a1, . . . , an} is a minimal generating set of S if S is generated by
{a1, . . . , an} and S cannot be generated by any set of positive integers with fewer than
n elements. Prove that every numerical semigroup S has a unique minimal generating
set.
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If a is part of the minimal generating set of S, we say that a is a generator of S. This will be
important later.

The genus and Frobenius number of a numerical semigroup

Now that you have two equivalent definitions of numerical semigroups to work with, we can start
analyzing them in more detail. The genus of a numerical semigroup S is the number of positive
integers not contained in S. For example, 〈4, 6, 9〉 = {0, 4, 6, 8, 9, 10, 12, 13, . . . } has genus 6, because
it does not contain 1, 2, 3, 5, 7, or 11. The Frobenius number of a numerical semigroup S is the
largest integer that S does not contain. For example, 〈4, 6, 9〉 has Frobenius number 11. Given
a numerical semigroup S, let g(S) be its genus and F (S) its Frobenius number. We will write g
and F for g(S) and F (S) respectively when there is no chance of confusion. (Note that F may be
negative. Specifically, if S consists of all the non-negative integers, then F (S) = −1.)

3. (a) [4] Compute the genus and Frobenius number of (i) 〈5, 7, 11, 16〉 and (ii) 〈3, 7, 8〉.
(b) [8] Prove that for any numerical semigroup S, we have F (S) ≤ 2g(S)− 1.

The famous Chicken McNugget Theorem states that if McDonald’s sells Chicken McNuggets in
boxes of a or b McNuggets where gcd(a, b) = 1, then the largest number of McNuggets one cannot
buy is ab− a− b.

4. (a) [1] Restate the Chicken McNugget Theorem in terms of the numerical semigroup 〈a, b〉.
(b) [8] Prove the Chicken McNugget Theorem. (Possible hint: consider the grid

1 2 · · · a
a+ 1 a+ 2 · · · 2a

...
...

. . .
...

(b− 1)a+ 1 (b− 1)a+ 2 · · · ba

 .

Cross out the numbers of McNuggets that you can buy. What do you notice? Try this
with actual numbers in place of a, b if you’re not comfortable.)

(c) [10] Find, with proof, the genus of 〈a, b〉.

The multiplicity, Apéry set, and embedding dimension of a numerical semigroup

The multiplicity of a numerical semigroup S is the smallest positive integer it contains. For example,
〈4, 6, 9〉 = {0, 4, 6, 8, 9, 10, 12, 13, . . . } has multiplicity 4. We refer to the multiplicity of S by m(S),
or m when there is no possibility of confusion.

The Apéry set of a numerical semigroup S is the set A(S) = {n | n ∈ S, n −m(S) /∈ S}. For
example, 〈4, 6, 9〉 has Apéry set {0, 6, 9, 15}. Notice that A(S) always contains 0. As usual, we say
A for A(S) when there is no possibility of confusion.

5. (a) [4] Compute the multiplicity and the Apéry set of (i) 〈5, 7, 11, 16〉 and (ii) 〈3, 7, 8〉.
(b) [4] Prove that if numerical semigroup S has multiplicity m, then A(S) can be uniquely

written in the form {0, k1m + 1, k2m + 2, . . . , km−1m + m − 1} where k1, . . . , km−1 are
positive integers and kim+i is the smallest element of S which has a remainder of i when
divided by m. For example, A(〈4, 6, 9〉) = {0, 9, 6, 15} = {0, 2 · 4 + 1, 1 · 4 + 2, 3 · 4 + 3}.
In the future, we will often refer to k1, . . . , km−1 as the Apéry coefficients of S.
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(c) [4] Prove that S is generated by (A(S) − {0}) ∪ {m}. (Note that this does not mean
(A(S) − {0}) ∪ {m} is a minimal generating set of S—in fact, that is not the case for
our favorite example 〈4, 6, 9〉.)

(d) [3] Write, with proof, the genus of S in terms of its Apéry coefficients.

(e) [3] Write, with proof, the Frobenius number of S in terms of its Apéry coefficients.

Note that because S is generated by (A(S)− {0}) ∪ {m}, different numerical semigroups must
have different Apéry sets. Hence we can associate each S with a unique sequence of Apéry co-
efficients k1, . . . , km−1. The natural next question becomes: when can an arbitrary sequence of
positive integers k1, . . . , km−1 be the Apéry set of a valid numerical semigroup?

6. (a) [4] Suppose numerical semigroup S has Apéry coefficients k1, . . . , km−1. Prove that if
1 ≤ i, j ≤ m− 1 and i+ j < m, then ki + kj ≥ ki+j . Also prove that if 1 ≤ i, j ≤ m− 1
and i+ j > m, then ki + kj + 1 ≥ ki+j−m.

(b) [8] Prove that if k1, . . . , km−1 satisfy the inequalities given in part a, there is a semigroup
S with k1, . . . , km−1 as its Apéry coefficients.

(c) [8] Find, with proof, in terms of g and m, the number of numerical semigroups S of
genus g and multiplicity m satisfying F (S) < 2m.

(d) [8] Prove that the number of numerical semigroups S of a fixed genus g (but any mul-
tiplicity) satisfying F (S) < 2m(S) is a Fibonacci number.

The embedding dimension of a numerical semigroup S is the number of elements in its minimal
generating set, which we call e(S) or e when there is no chance of confusion. Note that because S
is generated by (A(S)− {0}) ∪ {m}, we have e(S) ≤ m(S). If S is such that e(S) = m(S), we say
that S is a maximal embedding dimension numerical semigroup, or MED for short.

7. [10] Given a sequence of positive integers k1, . . . , km−1, give, with proof, necessary and suffi-
cient conditions for k1, . . . , km−1 to be the Apéry coefficients of an MED numerical semigroup.

The semigroup tree

The semigroup tree is a systematic way of creating numerical semigroups. We start at level 0 of the
tree, where we put the unique numerical semigroup of genus 0, that is, 〈1〉 = N0. (By convention,
N0 has Frobenius number −1.) If numerical semigroup S appears at level g, it has some number
of children which appear at level g + 1. Each child is created by removing from the set S a single
element n, with the condition that n is a generator (that is, an element of the minimal generating
set of S) which is larger than the Frobenius number F (S). Hence, we get the only child of 〈1〉 by
removing 1, which results in 〈2, 3〉 of Frobenius number 1 at level 1. Now 2, 3 are both larger than
1, so 〈2, 3〉 has two children at level 2: 〈3, 4, 5〉, which we get by removing 2, and 〈2, 5〉, which we
get by removing 3. The first few levels of the tree are shown below. Each element is given in the
format (minimal generating set, Frobenius number).
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〈1〉,−1

〈2, 3〉, 1

〈3, 4, 5〉, 2 〈2, 5〉, 3

〈4, 5, 6, 7〉, 3 〈3, 5, 7〉, 4 〈3, 4〉, 5 〈2, 7〉, 5

For convenience, when a semigroup has multiple children, we arrange them from left to right in
increasing order of the size of the generator removed from the “parent”.

8. (a) [7] Compute the next level of the tree, following the format given above. (So write
each child in terms of its minimal generating set and give its Frobenius number.) Use a
separate sheet of paper, not the provided answer sheet.

(b) [4] Prove that as stated, the algorithm which generates the tree really does only create
valid numerical semigroups, and that every numerical semigroup S appears exactly once
in this tree (at level equal to its genus).

(c) [4] Describe in general, with justification, all elements of the rightmost branch of the
tree, including minimal generating set and Frobenius number.

(d) [4] Describe in general, with justification, all elements of the leftmost branch of the tree,
including minimal generating set and Frobenius number.

9. (a) [6] Suppose that S is not in the leftmost branch of the semigroup tree and that it has
a child S′. Then answer—proof not required—the following in terms of the multiplicity,
Frobenius number, and embedding dimension of S and S′: (i) Which generators of S
are still generators of S′, and which are not? (ii) Which generators of S′ were not also
generators of S? Use a separate sheet of paper, not the provided answer sheet.

(b) [10] Now, prove your answers to part a.

Weights

The weight of a numerical semigroup S is the sum of the positive integers not contained in S. For
example, the weight of 〈4, 6, 9〉 = {0, 4, 6, 8, 9, 10, 12, 13, . . . } is 1 + 2 + 3 + 5 + 7 + 11 = 29.

10. (a) [2] Compute the weight of (i) 〈5, 7, 11, 16〉 and (ii) 〈3, 7, 8〉.
(b) [4] Write, with proof, the weight of S in terms of its Apéry coefficients ki. (You may

leave your answer as a summation, but only over i.)
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(c) [10] Find, with proof, the weight of 〈a, b〉 in terms of a and b.

A partition of a positive integer n is a list of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk such that
λ1 + λ2 + · · ·+ λk = n. For example, the distinct partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, and
1 + 1 + 1 + 1. Each λi is called a part of a partition. Given a partition λ = λ1 + · · · + λk of n,
the Ferrers-Young diagram of λ consists of a row of λ1 boxes, underneath which is a left-aligned
row of λ2 boxes, underneath which is a left-aligned row of λ3 boxes, and so on. For example, the
following figure is the Ferrers-Young diagram of the partition 5 + 3 + 2 of 10.

Given a box in a Ferrers-Young diagram, its associated hook is itself together with the boxes
below it and the boxes to its right. The size or length of the hook is the number of boxes it contains.
For example, the top left box in the Ferrers-Young diagram of 5 + 3 + 2 is associated with a hook
of length 7. All the hook lengths for the same partition are shown below.

2 1

4 3 1

7 6 4 2 1

The hookset of a partition λ, denoted Hλ, is the set of hook lengths which appear in the
Ferrers-Young diagram of λ. For example, the hookset of 5 + 3 + 2 is {1, 2, 3, 4, 6, 7}.

11. (a) [8] Let p(x, y, z) be the number of partitions of x into at most y parts, each of size at
most z. Prove that the number of numerical semigroups S with genus g, multiplicity m,
and weight w satisfying m < F (S) < 2m is exactly p(w−(g−m+1), g−m+1, 2m−2−g).

(b) [10] Prove that given any λ, the set N0 \Hλ is a numerical semigroup. (Possible hint:
think of the Ferrers-Young diagram of λ as a partial grid whose edges one may walk
along, and consider the walk starting at the bottom left corner and traversing the lower
right edges of the diagram, as shown below.)

start

end

(c) [10] Prove that given any numerical semigroup S, there exists a partition λ with Hλ =
N0 \ S.


