SMT 2011 ALGEBRA TEST AND SOLUTIONS FEBRUARY 19, 2011

1. Let a,b € C such that a + b = a? + b = %z Compute |Re(a)|.

Answer:

Sl

2¥3j we can let a = ?z +x and b = ?z — 2. Then a? + b* = 2((?@)2 +a?) =

2= 1+T‘/§Z = 2em/3 g = :I:% . @ Since |Re(a)| = |Re(z)|, the answer is

2. Consider the curves z? + y? = 1 and 222 + 22y + 32 — 22 — 2y = 0. These curves intersect at two
points, one of which is (1,0). Find the other one.
) 3 4
Answer: (_gv g)
From the first equation, we get that y?> = 1 — 2. Plugging this into the second one, we are left with

202 £ 221 — a2+ 1 -2 —22F2V/1 - 22 =0= (v — 1) = F2/1 — 22(x — 1)
=z —1=F2v1— 22 assuming = # 1
=2 -2r+1=4-42" = 52> - 22 -3 =0,
The quadratic formula yields that z = 21—%8 =1, —% (we said that x # 1 above but we see that it is still

valid). If x = 1, the first equation forces y = 0 and we easily see that this solves the second equation.
If x = f%, then clearly y must be positive or else the second equation will sum five positive terms.

Therefore y = /1 — % = 1/% = %. Hence the other point is (—%, %)

3. If r, s, t, and u denote the roots of the polynomial f(z) = 2* + 323 + 3z + 2, find
1 1 1 1
2 + 2 + 2 + 2

Answer: %

First notice that the polynomial
1 3 3
gz)=a* | =+ S +54+2) =221 +32°+ 3z +1
R R

is a polynomial with roots %, %, %, % Therefore, it is sufficient to find the sum of the squares of the

roots of g(x), which we will denote as r; through r4. Now, note that
2 s 4t = (r e+ ry+ra)? — (rire Frirs Frirg Frorz oy rary) = (——)% — =

by Vieta’s Theorem, where a,, denotes the coefficient of 2™ in g(x). Plugging in values, we get that
our answer is (—3)2 —0 = 2.
4. Find the 2011th-smallest z, with x > 1, that satisfies the following relation:
sin(lnx) +2cos(3Inz)sin(2lnz) = 0.
Answer: ¢ = 20117/5
Set y = Inx, and observe that
2 cos(3y) sin(2y) = sin(3y + 2y) — sin(3y — 2y) = sin(by) — sin(y),
so that the equation in question is simply
sin(5y) = 0.
The solutions are therefore
nw nw/5

hr=y=— = x=¢

3 for all n € N.
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5. Find the remainder when (z + 2)29'! — (z + 1)20!! is divided by 2% + 2 + 1.
Answer: (=39 — 1)g 4 (—2. 31005 _ 1)

The standard method is to use the third root of unity w, w? +w+1 = 0. Let (z+2)?11 — (2 +1)?91 =
(22 4+2+1)Q(r) +ax+b and substitute z = w. Then aw+b = (w+2)?1 — (w+1)?°!L. Note that w+2
has size v/3 and argument 7/6, so (w4 2)% = —33. Also w + 1 has magnitude 1 and argument 7/3, so
(w+1)% = 1. Using this and 2011 = 6 - 335 + 1, we get that aw + b = (=319 — 1)w + (-2 31905 — 1),

Another solution is to note that (z +2)? = 22 + 42 +4 = —32% (mod 2? + v + 1) and (z + 1)? =
22 +22+1 =2 (mod 22 + z + 1). Then we have 23 = 1 (mod 22 + x + 1) and we can proceed by
using periodicity.

6. There are 2011 positive numbers with both their sum and the sum of their reciprocals equal to 2012.
Let = be one of these numbers. Find the maximum of  + 2.

8045
2012

Let y1,y2, -+, Y2010 be the 2010 numbers distinct from z. Then y; +y2 + -+ - + y2010 = 2012 — z and
y—ll + y% 44+ L =2012 - % Applying the Cauchy-Schwarz inequality gives

Y2010
2010 2010 1 1
" — ) = (2012 — 2)(2012 — =) > 20102
(0] (35 = oz

i=1 7"

Answer:

s0 20122 — 2012(z 4+ 2~ 1) + 1 — 20102 > 0, = + =~ < 8045/2012.

7. Let P(z) be a polynomial of degree 2011 such that P(1) =0, P(2) =1, P(4) =2, ... , and P(2%011) =
2011. Compute the coefficient of the ! term in P(x).

Answer: 2 — 22%

We analyze Q(z) = P(2z) — P(z). One can observe that Q(x) — 1 has the powers of 2 starting from
1,2,4,---, up to 22910 as roots. Since Q has degree 2011, Q(x) — 1 = A(x — 1)(z — 2) - - - (x — 22°10)
for some A. Meanwhile Q(0) = P(0) — P(0) =0, so

Q(O) —]1=—1= A(—l)(—2) . (_22010) — _2(2010-2011)/2A'
Therefore A = 2-(10052011) ' Rinally, note that the coefficient of z is same for P and Q — 1, so it equals

_ _ 4.91005:2011 (92011 _ ; 1
A(=20)(=21) -+ (=22010)(=20) + (=271 -+ (—272019)) = gt — = |2 = 375 |

8. Find the maximum of
ab+ be + cd

a? +b* + c? + d?

for reals a, b, ¢, and d not all zero.

Answer: @

One has ab < %aQ + %bQ, be < %bQ + %02, and cd < icQ + %dz by AM-GM. If we can set t such that

] by ad? o .
L =1 4+ 1 it can be proved that _2etbeted < glatbite+d) _ ¢ ,nd this is maximal because we

2 a?+b2+c?2+d? =  a?+b2+c2+d? 2
can set a, b, c,d so that the equality holds in every inequality we used. Solving this equation, we get
t= #, so the maximum is £ = @.

9. It is a well-known fact that the sum of the first n k-th powers can be represented as a polynomial in
n. Let Px(n) be such a polynomial for integers k and n. For example,

o5 nn+1)2n+1
LR L))

so one has 12 ) ) ) )
P2(x):x(x+ )6( L )=§x3+§x2+6x.
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10.

Evaluate P;(—3) + Ps(—4).
Answer: —665
Since the equation

Pk(x) = Pk(a: — 1) + z"

has all integers > 2 as roots, the equation is an identity, so it holds for all x. Now we can substitute

r=-1,-2,-3,-4,--- to prove
n—1

so Pr(=3) + Ps(—4) = —(=1)5 — (=2)% — (=3)¢ — (=1)" — (-2)7 = —665.

How many polynomials P of degree 4 satisfy P(x?) = P(z)P(—x)?

Answer: 10
Note that if r is a root of P then r? is also a root. Therefore r, r ,7"22 , 7“23, .-+, are all roots of P. Since
P has a finite number of roots, two of these roots should be equal. Therefore, either r = 0 or 7V =1

for some N > 0.
If all roots are equal to 0 or 1, then P is of the form ax®(z — 1)(4_b) forb=0,...,4.

2

Now suppose this is not the case. For such a polynomial, let ¢ denote the largest integer such that
r = e?™P/4 i5 a root for some integer p coprime to q. We claim that the only suitable ¢ > 1 are ¢ = 3
and ¢ = 5.

First note that if r is a root then one of \/T or —/T is also a root. So if ¢ is even, then one of
e2m™P/24 or ¢2™P+4/24 should also be root of p, and both p/q and (p 4 ¢)/2q are irreducible fractions.
This contradicts the assumption that ¢ is maximal. Therefore ¢ must be odd. Now, if ¢ > 6, then

r=2,r~1 .72, 7% should be all distinct, so ¢ < 6. Therefore ¢ =5 or 3.

If ¢ = 5, then the value of p is not important as P has the complex fifth roots of unity as its roots,
so P =a(z* + 2% + 22 + x +1). If ¢ = 3, then P is divisible by 22 + z + 1. In this case we let
P(z) = a(z? + v + 1)Q(z) and repeating the same reasoning we can show that Q(z) = 2> + x + 1 or
Q(x) is of form xb(x — 1)27°.

Finally, we can show that exactly one member of all 10 resulting families of polynomials fits the desired
criteria. Let P(x) = a(x — 7)(z — s)(x — t)(z — u). Then, P(z)P(—z) = a?(2® — r?)(2? — s?)(2? —
t2)(2? — u?). We now claim that 72, s2, 2, and u? equal r, s, t, and u in some order. We can prove
this noting that the mapping f(z) = 22 maps 0 and 1 to themselves and maps the third and fifth roots
of unity to another distinct third or fifth root of unity, respectively. Hence, for these polynomials,
P(z)P(—z) = a®(2? — r)(2? — s)(22 — t)(2? — u) = aP(2?), so there exist exactly 10 polynomials that
fit the desired criteria, namely the ones from the above 10 families with a = 1.



