
SMT 2011 Algebra Test and Solutions February 19, 2011

1. Let a, b ∈ C such that a+ b = a2 + b2 = 2
√
3

3 i. Compute |Re(a)|.
Answer: 1√

2

From a + b = 2
√
3
3 i we can let a =

√
3
3 i + x and b =

√
3
3 i − x. Then a2 + b2 = 2((

√
3
3 i)

2 + x2) =

2(x2 − 1
3 ) = 2

√
3

3 i. So x2 = 1+
√
3i

3 = 2
3e
iπ/3, x = ±

√
2√
3
·
√
3+i
2 . Since |Re(a)| = |Re(x)|, the answer is

√
2√
3
·
√
3
2 = 1√

2
.

2. Consider the curves x2 + y2 = 1 and 2x2 + 2xy + y2 − 2x − 2y = 0. These curves intersect at two
points, one of which is (1, 0). Find the other one.

Answer:
(
−3

5
, 4
5

)
From the first equation, we get that y2 = 1− x2. Plugging this into the second one, we are left with

2x2 ± 2x
√

1− x2 + 1− x2 − 2x∓ 2
√

1− x2 = 0⇒ (x− 1)2 = ∓2
√

1− x2(x− 1)

⇒ x− 1 = ∓2
√

1− x2 assuming x 6= 1

⇒ x2 − 2x+ 1 = 4− 4x2 ⇒ 5x2 − 2x− 3 = 0.

The quadratic formula yields that x = 2±8
10 = 1,− 3

5 (we said that x 6= 1 above but we see that it is still
valid). If x = 1, the first equation forces y = 0 and we easily see that this solves the second equation.
If x = − 3

5 , then clearly y must be positive or else the second equation will sum five positive terms.

Therefore y =
√

1− 9
25 =

√
16
25 = 4

5 . Hence the other point is
(
− 3

5 ,
4
5

)
.

3. If r, s, t, and u denote the roots of the polynomial f(x) = x4 + 3x3 + 3x+ 2, find

1

r2
+

1

s2
+

1

t2
+

1

u2
.

Answer: 9
4

First notice that the polynomial

g(x) = x4
(

1

x4
+

3

x3
+

3

x
+ 2

)
= 2x4 + 3x3 + 3x+ 1

is a polynomial with roots 1
r , 1

s , 1
t ,

1
u . Therefore, it is sufficient to find the sum of the squares of the

roots of g(x), which we will denote as r1 through r4. Now, note that

r21 + r22 + r23 + r24 = (r1 + r2 + r3 + r4)2 − (r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4) = (−a3
a4

)2 − a2
a4

by Vieta’s Theorem, where an denotes the coefficient of xn in g(x). Plugging in values, we get that
our answer is (− 3

2 )2 − 0 = 9
4 .

4. Find the 2011th-smallest x, with x > 1, that satisfies the following relation:

sin(lnx) + 2 cos(3 lnx) sin(2 lnx) = 0.

Answer: x = e2011π/5

Set y = lnx, and observe that

2 cos(3y) sin(2y) = sin(3y + 2y)− sin(3y − 2y) = sin(5y)− sin(y),

so that the equation in question is simply

sin(5y) = 0.

The solutions are therefore

lnx = y =
nπ

5
=⇒ x = enπ/5 for all n ∈ N.
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5. Find the remainder when (x+ 2)2011 − (x+ 1)2011 is divided by x2 + x+ 1.

Answer: (−31005 − 1)x + (−2 · 31005 − 1)

The standard method is to use the third root of unity ω, ω2 +ω+1 = 0. Let (x+2)2011− (x+1)2011 =
(x2+x+1)Q(x)+ax+b and substitute x = ω. Then aω+b = (ω+2)2011−(ω+1)2011. Note that ω+2
has size

√
3 and argument π/6, so (ω + 2)6 = −33. Also ω + 1 has magnitude 1 and argument π/3, so

(ω + 1)6 = 1. Using this and 2011 = 6 · 335 + 1, we get that aω + b = (−31005 − 1)ω + (−2 · 31005 − 1).

Another solution is to note that (x + 2)2 ≡ x2 + 4x + 4 ≡ −3x2 (mod x2 + x + 1) and (x + 1)2 ≡
x2 + 2x + 1 ≡ x (mod x2 + x + 1). Then we have x3 ≡ 1 (mod x2 + x + 1) and we can proceed by
using periodicity.

6. There are 2011 positive numbers with both their sum and the sum of their reciprocals equal to 2012.
Let x be one of these numbers. Find the maximum of x+ x−1.

Answer: 8045
2012

Let y1, y2, · · · , y2010 be the 2010 numbers distinct from x. Then y1 + y2 + · · ·+ y2010 = 2012− x and
1
y1

+ 1
y2

+ · · ·+ 1
y2010

= 2012− 1
x . Applying the Cauchy-Schwarz inequality gives(

2010∑
i=1

yi

)(
2010∑
i=1

1

yi

)
= (2012− x)(2012− 1

x
) ≥ 20102

so 20122 − 2012(x+ x−1) + 1− 20102 ≥ 0, x+ x−1 ≤ 8045/2012.

7. Let P (x) be a polynomial of degree 2011 such that P (1) = 0, P (2) = 1, P (4) = 2, ... , and P (22011) =
2011. Compute the coefficient of the x1 term in P (x).

Answer: 2 − 1
22010

We analyze Q(x) = P (2x) − P (x). One can observe that Q(x) − 1 has the powers of 2 starting from
1, 2, 4, · · · , up to 22010 as roots. Since Q has degree 2011, Q(x) − 1 = A(x − 1)(x − 2) · · · (x − 22010)
for some A. Meanwhile Q(0) = P (0)− P (0) = 0, so

Q(0)− 1 = −1 = A(−1)(−2) · · · (−22010) = −2(2010·2011)/2A.

Therefore A = 2−(1005·2011). Finally, note that the coefficient of x is same for P and Q− 1, so it equals

A(−20)(−21) · · · (−22010)((−20) + (−2−1) + · · ·+ (−2−2010)) = A·21005·2011(22011−1)
22010 = 2− 1

22010
.

8. Find the maximum of
ab+ bc+ cd

a2 + b2 + c2 + d2

for reals a, b, c, and d not all zero.

Answer:
√

5+1
4

One has ab ≤ t
2a

2 + 1
2tb

2, bc ≤ 1
2b

2 + 1
2c

2, and cd ≤ 1
2tc

2 + t
2d

2 by AM-GM. If we can set t such that
t
2 = 1

2t + 1
2 , it can be proved that ab+bc+cd

a2+b2+c2+d2 ≤
t
2 (a

2+b2+c2+d2)

a2+b2+c2+d2 = t
2 , and this is maximal because we

can set a, b, c, d so that the equality holds in every inequality we used. Solving this equation, we get

t = 1+
√
5

2 , so the maximum is t
2 =

√
5+1
4 .

9. It is a well-known fact that the sum of the first n k-th powers can be represented as a polynomial in
n. Let Pk(n) be such a polynomial for integers k and n. For example,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

so one has

P2(x) =
x(x+ 1)(2x+ 1)

6
=

1

3
x3 +

1

2
x2 +

1

6
x.
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Evaluate P7(−3) + P6(−4).

Answer: −665

Since the equation
Pk(x) = Pk(x− 1) + xk

has all integers ≥ 2 as roots, the equation is an identity, so it holds for all x. Now we can substitute
x = −1,−2,−3,−4, · · · to prove

Pk(−n) = −
n−1∑
i=1

(−i)k

so P7(−3) + P6(−4) = −(−1)6 − (−2)6 − (−3)6 − (−1)7 − (−2)7 = −665.

10. How many polynomials P of degree 4 satisfy P (x2) = P (x)P (−x)?

Answer: 10

Note that if r is a root of P then r2 is also a root. Therefore r, r2, r2
2

, r2
3

, · · · , are all roots of P . Since
P has a finite number of roots, two of these roots should be equal. Therefore, either r = 0 or rN = 1
for some N > 0.

If all roots are equal to 0 or 1, then P is of the form axb(x− 1)(4−b) for b = 0, ..., 4.

Now suppose this is not the case. For such a polynomial, let q denote the largest integer such that
r = e2πi·p/q is a root for some integer p coprime to q. We claim that the only suitable q > 1 are q = 3
and q = 5.

First note that if r is a root then one of
√
r or −

√
r is also a root. So if q is even, then one of

e2πi·p/2q or e2πi·p+q/2q should also be root of p, and both p/q and (p+ q)/2q are irreducible fractions.
This contradicts the assumption that q is maximal. Therefore q must be odd. Now, if q > 6, then
r−2, r−1, r, r2, r4 should be all distinct, so q ≤ 6. Therefore q = 5 or 3.

If q = 5, then the value of p is not important as P has the complex fifth roots of unity as its roots,
so P = a(x4 + x3 + x2 + x + 1). If q = 3, then P is divisible by x2 + x + 1. In this case we let
P (x) = a(x2 + x + 1)Q(x) and repeating the same reasoning we can show that Q(x) = x2 + x + 1 or
Q(x) is of form xb(x− 1)2−b.

Finally, we can show that exactly one member of all 10 resulting families of polynomials fits the desired
criteria. Let P (x) = a(x − r)(x − s)(x − t)(x − u). Then, P (x)P (−x) = a2(x2 − r2)(x2 − s2)(x2 −
t2)(x2 − u2). We now claim that r2, s2, t2, and u2 equal r, s, t, and u in some order. We can prove
this noting that the mapping f(x) = x2 maps 0 and 1 to themselves and maps the third and fifth roots
of unity to another distinct third or fifth root of unity, respectively. Hence, for these polynomials,
P (x)P (−x) = a2(x2 − r)(x2 − s)(x2 − t)(x2 − u) = aP (x2), so there exist exactly 10 polynomials that
fit the desired criteria, namely the ones from the above 10 families with a = 1.


